A Reconfigurable Single-Photon-Counting Integrating Receiver for Optical Communications

A reconfigurable Single-Photon Avalanche Diode integrating receiver in standard 130 nm CMOS is presented for optical links with an array readout bandwidth of 100 MHz. A maximum count rate of 58 G photon/s is observed, with a dynamic range of ≈ 79 dB, a sensitivity of ≈ - 31.7 dBm at 100 MHz and a BER of ≈ 1 ×10-9. The sensor core draws 89 mW at the maximum count rate and obtains a peak SNR of ≈157 dB. We investigate the properties of the receiver for optical communications in the visible spectrum, using its added functionality and reconfigurability to experimentally explore non-ideal influences. The all-digital 32 × 32 SPAD array, achieves a minimum dead time of 5.9 ns, and a median dark count rate of 2.5 kHz/SPAD. The internal gain of SPADs and spatio-temporal summation removes the need for analogue amplification. High noise devices can be weighted or removed to optimize the SNR. The power requirements, transient response and received data are explored and limiting factors similar to those of photodiode receivers are observed.

[1]  K. Langer,et al.  White Light Wireless Transmission at 200${+}$ Mb/s Net Data Rate by Use of Discrete-Multitone Modulation , 2009, IEEE Photonics Technology Letters.

[2]  J A Richardson,et al.  Scaleable Single-Photon Avalanche Diode Structures in Nanometer CMOS Technology , 2011, IEEE Transactions on Electron Devices.

[3]  P.-A. Besse,et al.  Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes , 2005, IEEE Journal of Solid-State Circuits.

[4]  Matteo Perenzoni,et al.  A CMOS mini-SiPM detector with in-pixel data compression for PET applications , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[5]  J. Richardson,et al.  Dynamic Quenching for Single Photon Avalanche Diode Arrays , 2007 .

[6]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[7]  J. Richardson,et al.  Single-Photon Avalanche Diodes in 90 nm CMOS imaging technology with sub-1 Hz Median Dark Count Rate , 2022 .

[8]  A. Migdall,et al.  Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array , 2006, quant-ph/0601102.

[9]  Day-Uei Li,et al.  FPGA implementation of a video-rate fluorescence lifetime imaging system with a 32×32 CMOS single-photon avalanche diode array , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[10]  Zhigong Wang,et al.  40-Gb/s, 0.18-μm CMOS Front-End Amplifier for VSR Parallel Optical Receiver , 2009, 2009 Symposium on Photonics and Optoelectronics.

[11]  Tobias Funk,et al.  MHz Count Rate , 139 dB Dynamic Range Single-Photon Avalanche Diode with Active Quenching Circuit in 130 nm CMOS Technology , 2011 .

[12]  A. Lacaita,et al.  Physics and numerical simulation of single photon avalanche diodes , 1997 .

[13]  Michiel Steyaert,et al.  A high-speed 850-nm optical receiver front-end in 0.18-/spl mu/m CMOS , 2006, IEEE Journal of Solid-State Circuits.

[14]  R. K. Henderson,et al.  A Single-Photon Avalanche Diode in 90-nm CMOS Imaging Technology With 44% Photon Detection Efficiency at 690 nm , 2012, IEEE Electron Device Letters.

[15]  Michiel Steyaert,et al.  A high-speed 850-nm optical receiver front-end in 0.18-μm CMOS , 2006 .

[16]  E. Charbon,et al.  An intra-chip electro-optical channel based on CMOS single photon detectors , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[17]  Kei Kuwabara,et al.  Development of CMOS integrated optical receiver for short‐range data communication , 2004 .

[18]  Joe C. Campbell,et al.  CMOS-compatible high-speed planar silicon photodiodes fabricated on SOI substrates , 2002 .

[19]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[20]  R. Sobolewski,et al.  Integrated Silicon PIN Photodiodes Using Deep N-Well in a Standard 0.18-$\mu$ m CMOS Technology , 2009, Journal of Lightwave Technology.

[21]  Jun Zhang,et al.  2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution , 2010, Defense + Commercial Sensing.

[22]  Joe C. Campbell,et al.  High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology , 2002 .

[23]  Edoardo Charbon,et al.  A CMOS compatible Ge-on-Si APD operating in proportional and Geiger modes at infrared wavelengths , 2011, 2011 International Electron Devices Meeting.

[24]  Alberto Tosi,et al.  Low-noise and large-area CMOS SPADs with timing response free from slow tails , 2012, 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[25]  Michiel Steyaert,et al.  A high-speed fully integrated optical receiver in standard 130nm CMOS , 2008, 2008 15th IEEE International Conference on Electronics, Circuits and Systems.

[26]  Robert K. Henderson,et al.  A 3×3, 5µm pitch, 3-transistor single photon avalanche diode array with integrated 11V bias generation in 90nm CMOS technology , 2010, 2010 International Electron Devices Meeting.

[27]  Wei-Zen Chen,et al.  A 2.5 Gbps CMOS Fully Integrated Optical Receicer with Lateral PIN Detector , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[28]  Steve Collins,et al.  Photocurrent dependent response of a SPAD biased by a charge pump , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[29]  D. Stoppa,et al.  Low-Noise CMOS single-photon avalanche diodes with 32 ns dead time , 2007, ESSDERC 2007 - 37th European Solid State Device Research Conference.

[30]  Wei-Zen Chen,et al.  A 3.125 Gbps CMOS fully integrated optical receiver with adaptive analog equalizer , 2007, 2007 IEEE Asian Solid-State Circuits Conference.

[31]  F. Tavernier,et al.  High-Speed Optical Receivers With Integrated Photodiode in 130 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.

[32]  Antonino Ingargiola,et al.  Optical crosstalk in single photon avalanche diode arrays: a new complete model. , 2008, Optics express.

[33]  M. Kuijk,et al.  Asynchronous 250-Mb/s optical receivers with integrated detector in standard CMOS technology for optocoupler applications , 2000, IEEE Journal of Solid-State Circuits.

[34]  C. Niclass,et al.  A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18µm CMOS technology , 2010, 2010 International Electron Devices Meeting.

[35]  H. Zimmermann,et al.  1.25 Gbit/s Over 50 m Step-Index Plastic Optical Fiber Using a Fully Integrated Optical Receiver With an Integrated Equalizer , 2012, Journal of Lightwave Technology.

[36]  Horst Zimmermann,et al.  2.5 Gbit/s silicon receiver OEIC with large diameter photodiode , 2004 .

[37]  Edoardo Charbon,et al.  Techniques for fully integrated intra-/inter-chip optical communication , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[38]  Fei Yuan,et al.  CMOS Current-Mode Circuits for Data Communications (Analog Circuits and Signal Processing) , 2006 .

[39]  M. Horowitz,et al.  A 700 Mbps/pin CMOS signalling interface using current integrating receivers , 1996, 1996 Symposium on VLSI Circuits. Digest of Technical Papers.

[40]  R. Henderson,et al.  Edinburgh Research Explorer A Low Dark Count Single Photon Avalanche Diode Structure Compatible with Standard Nanometer Scale CMOS Technology , 2009 .

[41]  M. Dawson,et al.  High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array , 2010, IEEE Photonics Technology Letters.

[42]  M. Dawson,et al.  Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array , 2012, Journal of Lightwave Technology.

[43]  J.C. Campbell,et al.  Recent Advances in Telecommunications Avalanche Photodiodes , 2007, Journal of Lightwave Technology.

[44]  B. Nauta,et al.  A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication , 2005, IEEE Journal of Solid-State Circuits.

[45]  Edward Fisher,et al.  A reconfigurable 14-bit 60GPhoton/s Single-Photon receiver for visible light communications , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[46]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Dan Nguyen,et al.  Gigahertz bandwidth photon counting , 2009, Defense + Commercial Sensing.

[48]  Kristofer S. J. Pister,et al.  A 256-element CMOS imaging receiver for free-space optical communication , 2005, IEEE Journal of Solid-State Circuits.

[49]  Olaf Ziemann,et al.  10 Gbit/s over 25 m plastic optical fiber as a way for extremely low-cost optical interconnection , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.