Node-disjoint paths in hierarchical hypercube networks

The hierarchical hypercube network is suitable for massively parallel systems. One of its appealing properties is the low number of connections per processor, which can facilitate the VLSI design and fabrication. Other alluring features include symmetry and logarithmic diameter, which can derive easy and fast algorithms for communication. In this paper, a maximal number of node-disjoint paths are constructed between every two distinct nodes of the hierarchical hypercube network. Their maximal length is not greater than max{2^m^+^1+2m+1,2^m^+^1+m+4}, where 2^m^+^1 is the diameter. The effectiveness of node-disjoint paths is further verified by experiments.

[1]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[2]  Lih-Hsing Hsu,et al.  On embedding cycles into faulty twisted cubes , 2006, Inf. Sci..

[3]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[4]  Magdy A. Bayoumi,et al.  The Hierarchical Hypercube: A New Interconnection Topology for Massively Parallel Systems , 1994, IEEE Trans. Parallel Distributed Syst..

[5]  M.A. Bayoumi,et al.  Properties and performance of the hierarchical hypercube , 1992, Proceedings Sixth International Parallel Processing Symposium.

[6]  Butler W. Lampson,et al.  Interconnecting Computers: Architecture, Technology, and Economics , 1994, Programming Languages and System Architectures.

[7]  Dyi-Rong Duh,et al.  On the Rabin number problem , 1997 .

[8]  Jung-Sheng Fu Longest fault-free paths in hypercubes with vertex faults , 2006, Inf. Sci..

[9]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[10]  D. Frank Hsu,et al.  Generalized Diameters of the Mesh of Trees , 2004, Theory of Computing Systems.

[11]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[12]  Xiaohua Jia,et al.  Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..

[13]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[14]  Magdy A. Bayoumi,et al.  On the hierarchical hypercube interconnection network , 1993, [1993] Proceedings Seventh International Parallel Processing Symposium.

[15]  Ellis Horowitz,et al.  Computer Algorithms / C++ , 2007 .

[16]  Jung-Sheng Fu Hamiltonicity of the WK-recursive network with and without faulty nodes , 2005, IEEE Transactions on Parallel and Distributed Systems.

[17]  Michael O. Rabin,et al.  Efficient dispersal of information for security, load balancing, and fault tolerance , 1989, JACM.

[18]  Gen-Huey Chen,et al.  Topological Properties of WK-Recursive Networks , 1994, J. Parallel Distributed Comput..

[19]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[20]  Charles E. Leiserson,et al.  Fat-trees: Universal networks for hardware-efficient supercomputing , 1985, IEEE Transactions on Computers.

[21]  Shietung Peng,et al.  An Efficient Algorithm for the k-Pairwise Disjoint Paths Problem in Hypercubes , 2000, J. Parallel Distributed Comput..

[22]  Gen-Huey Chen,et al.  Strong Rabin numbers of folded hypercubes , 2005, Theor. Comput. Sci..

[23]  Toru Kojima,et al.  Maximal vertex-connectivity of $\overrightarrow{S_{n,k}}$ , 2005 .

[24]  Jimmy J. M. Tan,et al.  Hyper hamiltonian laceability on edge fault star graph , 2004, Inf. Sci..

[25]  Jung-Sheng Fu,et al.  Node-disjoint paths and related problems on hierarchical cubic networks , 2002, Networks.

[26]  Yuval Tamir,et al.  Symmetric Crossbar Arbiters for VLSI Communication Switches , 1993, IEEE Trans. Parallel Distributed Syst..