The $$\mathcal {F}$$ F -Resolvent Equation and Riesz Projectors for the $$\mathcal {F}$$

Abstract. The Fueter-Sce-Qian mapping theorem is a two steps procedure to extend holomorphic functions of one complex variable to quaternionic or Clifford algebra-valued functions in the kernel of a suitable generalized Cauchy-Riemann operator. Using the Cauchy formula of slice monogenic functions it is possible to give the Fueter-Sce-Qian extension theorem an integral form and to define the F-functional calculus for n-tuples of commuting operators. This functional calculus is defined on the S-spectrum but it generates a monogenic functional calculus in the spirit of McIntosh and collaborators. One of the main goals of this paper is to show that the F-functional calculus generates the Riesz projectors. The existence of such projectors is obtained via the F-resolvent equation that we have generalized to the Clifford algebra setting. This equation was known in the quaternionic setting, but the Clifford algebras setting turned out to be much more complicated.

[1]  I. Sabadini,et al.  On the Bargmann-Fock-Fueter and Bergman-Fueter integral transforms , 2019, Journal of Mathematical Physics.

[2]  F. Colombo,et al.  On Some Properties of the Quaternionic Functional Calculus , 2009 .

[3]  Run Fueter Die Funktionentheorie der DifferentialgleichungenΔu=0 undΔΔu=0 mit vier reellen Variablen , 1934 .

[4]  F. Colombo,et al.  Fractional powers of vector operators with first order boundary conditions , 2020 .

[5]  J. Gilbert,et al.  Clifford Algebras and Dirac Operators in Harmonic Analysis , 1991 .

[6]  F. Colombo,et al.  Quaternionic Closed Operators, Fractional Powers and Fractional Diffusion Processes , 2019, Operator Theory: Advances and Applications.

[7]  D. Struppa,et al.  Noncommutative Functional Calculus: Theory and Applications of Slice Hyperholomorphic Functions , 2011 .

[8]  F. Sommen,et al.  The inverse Fueter mapping theorem , 2011 .

[9]  The Growth and Distortion Theorems for Slice Monogenic Functions , 2014, 1410.4369.

[10]  A. Mcintosh,et al.  The monogenic functional calculus , 1999 .

[11]  D. Struppa,et al.  Entire slice regular functions , 2015, 1512.04215.

[12]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[13]  Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space , 1998 .

[14]  S. Bernau The Spectral Theorem for Normal Operators , 1965 .

[15]  Vladimir V. Kisil,et al.  Möbius transformations and monogenic functional calculus , 1996 .

[16]  D. Alpay,et al.  Slice Hyperholomorphic Schur Analysis , 2016 .

[17]  F. Colombo,et al.  On the formulations of the quaternionic functional calculus , 2010 .

[18]  Tao Qian Fueter mapping theorem in hypercomplex analysis , 2015 .

[19]  Tao Qian,et al.  Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. , 1994 .

[20]  D. Alpay,et al.  The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum , 2014, 1409.7010.

[21]  F. Colombo,et al.  A nonconstant coefficients differential operator associated to slice monogenic functions , 2012 .

[22]  D. Alpay,et al.  The Spectral Theorem for Unitary Operators Based on the S-Spectrum , 2014, 1403.0175.

[23]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions: A Function Theory For The Dirac Operator , 2012 .

[24]  Tao Qian,et al.  The inverse Fueter mapping theorem for axially monogenic functions of degree k , 2019, Journal of Mathematical Analysis and Applications.

[25]  F. Colombo,et al.  Fractional powers of quaternionic operators and Kato's formula using slice hyperholomorphicity , 2015, 1506.01266.

[26]  K. Gürlebeck,et al.  Application of Holomorphic Functions in Two and Higher Dimensions , 2016 .

[27]  F. Colombo,et al.  The Cauchy formula with s-monogenic kernel and a functional calculus for noncommuting operators , 2011 .

[28]  D. Struppa,et al.  A new functional calculus for noncommuting operators , 2007, 0708.3594.

[29]  D. Alpay,et al.  The $H^\infty$ functional calculus based on the $S$-spectrum for quaternionic operators and for $n$-tuples of noncommuting operators , 2015, 1511.07629.

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  R. Ghiloni,et al.  Slice regular functions on real alternative algebras , 2010, 1008.4318.

[32]  F. Sommen,et al.  Fueter’s Theorem for Monogenic Functions in Biaxial Symmetric Domains , 2016, 1611.01324.

[33]  Jonathan Gantner,et al.  Universality property of the $S$-functional calculus, noncommuting matrix variables and Clifford operators , 2021 .

[34]  B. Jefferies Spectral Properties of Noncommuting Operators , 2004 .

[35]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions , 1992 .

[36]  F. Colombo,et al.  Spectral Theory on the S-Spectrum for Quaternionic Operators , 2019 .

[37]  Algebraic Approach to Slice Monogenic Functions , 2015, 1511.03902.

[38]  F. Colombo,et al.  Perturbation of normal quaternionic operators , 2017, Transactions of the American Mathematical Society.

[39]  D. Farenick,et al.  The spectral theorem in quaternions , 2003 .

[40]  T. Friedrich Dirac Operators in Riemannian Geometry , 2000 .

[41]  F. Colombo,et al.  An Application of the S-Functional Calculus to Fractional Diffusion Processes , 2018, Milan Journal of Mathematics.

[42]  D. Alpay,et al.  A New Resolvent Equation for the $$S$$S-Functional Calculus , 2013 .

[43]  D. Struppa,et al.  Slice monogenic functions , 2007, 0708.3595.

[44]  K. Gürlebeck,et al.  Quaternionic Analysis and Elliptic Boundary Value Problems , 1989 .

[45]  Irene Sabadini,et al.  Slice monogenic functions of a Clifford variable via the $S$-functional calculus , 2021, Proceedings of the American Mathematical Society.

[46]  F. Sommen,et al.  Analysis of Dirac Systems and Computational Algebra , 2004 .

[47]  P. Eberlein,et al.  Clifford Algebras , 2022 .

[48]  F. Sommen,et al.  A new integral formula for the inverse Fueter mapping theorem , 2013, 1302.0685.

[49]  M. Peloso,et al.  The structure of the fractional powers of the noncommutative Fourier law , 2019, Mathematical Methods in the Applied Sciences.

[50]  Extension results for slice regular functions of a quaternionic variable , 2009, 0905.1861.

[51]  K. Viswanath Normal operations on quaternionic Hilbert spaces , 1971 .

[52]  The F-functional calculus for unbounded operators , 2014 .

[53]  F. Colombo,et al.  The Fueter mapping theorem in integral form and the ℱ‐functional calculus , 2010 .

[54]  M. I. Falcão,et al.  Hypercomplex Polynomials, Vietoris’ Rational Numbers and a Related Integer Numbers Sequence , 2017 .

[55]  F. Sommen,et al.  Biaxial monogenic functions from Funk‐Hecke's formula combined with Fueter's theorem , 2014, 1405.2955.

[56]  V. Souček,et al.  The Radon transform between monogenic and generalized slice monogenic functions , 2014, Mathematische Annalen.

[57]  Regular Functions of a Quaternionic Variable , 2013 .

[58]  F. Colombo,et al.  A Structure Formula for Slice Monogenic Functions and Some of its Consequences , 2008 .

[59]  Tao Qian,et al.  On the inversion of Fueter's theorem , 2016 .

[60]  An extension theorem for slice monogenic functions and some of its consequences , 2010 .

[61]  A. Mcintosh,et al.  A functional calculus for several commuting operators , 1987 .

[62]  R. Ghiloni,et al.  Spectral Properties of Compact Normal Quaternionic Operators , 2014, 1402.2935.

[63]  D. Struppa,et al.  A New Theory of Regular Functions of a Quaternionic Variable , 2007 .

[64]  D. Struppa,et al.  Noncommutative Functional Calculus , 2011 .

[65]  F. Colombo,et al.  Fractional powers of vector operators and fractional Fourier’s law in a Hilbert space , 2018, Journal of Physics A: Mathematical and Theoretical.

[66]  Operator Theory on One-Sided Quaternionic Linear Spaces: Intrinsic S-Functional Calculus and Spectral Operators , 2018, 1803.10524.

[67]  On the equivalence of complex and quaternionic quantum mechanics , 2017, 1709.07289.