Scale Invariants of Radial Tchebichef Moments for Shape-Based Image Retrieval

Region-based descriptors often use moments to describe shapes. Recently, the discreet radial Tchebichef moment descriptors have been proposed. The radial Tchebichef moments are invariant with respect to image rotation. In order to achieve the scale invariance, researchers resort to resizing the original shape to predetermined size. This traditional scheme of scaling is time expensive and leads to the loss of some characteristics of a shape. Therefore, moments derived using the traditional normalization scheme may differ from the true moments of the original shape. In this paper, a simple yet powerful scheme has been proposed to derive a new set of scale invariants of radial Tchebichef moments. This scheme uses the area and the maximum radial distance of a shape to normalize the radial Tchebichef moments. The MPEF-7 scale-invariant database is used to evaluate the performance of the proposed scheme against four commonly used shape descriptors.

[1]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[2]  Ju Cheng Yang,et al.  Fingerprint Matching Using Invariant Moment Features , 2007, CIS.

[3]  Saeid Belkasim,et al.  Farthest point distance: A new shape signature for Fourier descriptors , 2009, Signal Process. Image Commun..

[4]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[5]  Miroslaw Bober,et al.  Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization , 2011, Computational Imaging and Vision.

[6]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[7]  Hélène Laurent,et al.  Comparative study of global invariant descriptors for object recognition , 2008, J. Electronic Imaging.

[8]  R. Casey Moment normalization of handprinted characters , 1970 .

[9]  Jian Zou,et al.  Generic orthogonal moments: Jacobi-Fourier moments for invariant image description , 2007, Pattern Recognit..

[10]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Huazhong Shu,et al.  Image analysis by discrete orthogonal Racah moments , 2007, Signal Process..

[12]  Huazhong Shu,et al.  Translation and scale invariants of Tchebichef moments , 2007, Pattern Recognit..

[13]  Huazhong Shu,et al.  Image analysis by discrete orthogonal dual Hahn moments , 2007, Pattern Recognit. Lett..

[14]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Guojun Lu,et al.  Evaluation of MPEG-7 shape descriptors against other shape descriptors , 2003, Multimedia Systems.

[16]  Dong Xu,et al.  Geometric moment invariants , 2008, Pattern Recognit..

[17]  Majid Ahmadi,et al.  Pattern recognition with moment invariants: A comparative study and new results , 1991, Pattern Recognit..

[18]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[19]  Robert B. McGhee,et al.  Aircraft Identification by Moment Invariants , 1977, IEEE Transactions on Computers.

[20]  Anthony P. Reeves,et al.  Three-Dimensional Shape Analysis Using Moments and Fourier Descriptors , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Peng Jia-xiong,et al.  Improvement and invariance analysis of Zernike moments using as a region-based shape descriptor , 2002, Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing.

[22]  Rui J. P. de Figueiredo,et al.  A general moment-invariants/attributed-graph method for three-dimensional object recognition from a single image , 1986, IEEE J. Robotics Autom..

[23]  Demetri Psaltis,et al.  Recognitive Aspects of Moment Invariants , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  M. Teague Image analysis via the general theory of moments , 1980 .

[25]  Guojun Lu,et al.  Study and evaluation of different Fourier methods for image retrieval , 2005, Image Vis. Comput..

[26]  C. Molder,et al.  A new version of Flusser moment set for pattern feature extraction , 2008 .

[27]  R. Mukundan Radial Tchebichef Invariants for Pattern Recognition , 2005, TENCON 2005 - 2005 IEEE Region 10 Conference.

[28]  Raveendran Paramesran,et al.  Image analysis by Krawtchouk moments , 2003, IEEE Trans. Image Process..

[29]  S. S. Reddi,et al.  Radial and Angular Moment Invariants for Image Identification , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.