Multi-parameter quantum metrology

The simultaneous quantum estimation of multiple parameters can provide a better precision than estimating them individually. This is an effect that is impossible classically. We review the rich background of quantum-limited local estimation theory of multiple parameters that underlies these advances. We discuss some of the main results in the field and its recent progress. We close by highlighting future challenges and open questions. Graphical Abstract

[1]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[2]  C. Geyer Supplementary Material for "Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity" , 2005, 1206.4762.

[3]  Li Jing,et al.  Fitting magnetic field gradient with Heisenberg-scaling accuracy , 2014, Scientific Reports.

[4]  Jonas Kahn,et al.  LOCAL ASYMPTOTIC NORMALITY AND OPTIMAL ESTIMATION FOR D-DIMENSIONAL QUANTUM SYSTEMS , 2008 .

[5]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[6]  Hiroshi Nagaoka,et al.  Quantum Fisher metric and estimation for pure state models , 1995 .

[7]  J. Kahn,et al.  Optimal Estimation of Qubit States with Continuous Time Measurements , 2006, quant-ph/0608074.

[8]  Madalin Guta,et al.  Information geometry and local asymptotic normality for multi-parameter estimation of quantum Markov dynamics , 2016, 1601.04355.

[9]  W. Marsden I and J , 2012 .

[10]  R. Gill,et al.  On asymptotic quantum statistical inference , 2011, 1112.2078.

[11]  Hiroshi Nagaoka,et al.  An estimation theoretical characterization of coherent states , 1999 .

[12]  P. Sekatski,et al.  Quantum metrology for the Ising Hamiltonian with transverse magnetic field , 2015, 1502.06459.

[13]  Zach DeVito,et al.  Opt , 2017 .

[14]  M. Paternostro,et al.  Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction , 2015 .

[15]  Alex Monras,et al.  Information geometry of Gaussian channels , 2009, 0911.1558.

[16]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[17]  Mankei Tsang,et al.  Quantum limit for two-dimensional resolution of two incoherent optical point sources , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[18]  E. Ercolessi,et al.  Geometry of mixed states for a q-bit and the quantum Fisher information tensor , 2012 .

[19]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[20]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[21]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[22]  D. Petz Monotone metrics on matrix spaces , 1996 .

[23]  Jing Liu,et al.  Quantum multiparameter metrology with generalized entangled coherent state , 2014, 1409.6167.

[24]  J. Jespersen,et al.  The Euro , 2016 .

[25]  Jean Kovalevsky,et al.  The development of modern metrology and its role today , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  V. Belavkin Generalized uncertainty relations and efficient measurements in quantum systems , 1976, quant-ph/0412030.

[27]  Katarzyna Macieszczak The Zeno limit in frequency estimation with non-Markovian environments , 2014 .

[28]  John M. Martinis,et al.  Qubit metrology for building a fault-tolerant quantum computer , 2015, npj Quantum Information.

[29]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[30]  Jonas Kahn Fast rate estimation of a unitary operation in SU(d) , 2007 .

[31]  C. Geyer Supplementary Material for "Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity" , 2005, 1206.4762.

[32]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[33]  Hugo Cable,et al.  Quantum-enhanced tomography of unitary processes , 2014, 1402.2897.

[34]  J. Kahn,et al.  Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.

[35]  Warwick P. Bowen,et al.  Quantum metrology and its application in biology , 2014, 1409.0950.

[36]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[37]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[38]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[39]  Carl W. Helstrom,et al.  Noncommuting observables in quantum detection and estimation theory , 1974, IEEE Trans. Inf. Theory.

[40]  C. Helstrom Quantum detection and estimation theory , 1969 .

[41]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[42]  M. Ballester,et al.  Entanglement is not very useful for estimating multiple phases , 2004, quant-ph/0403190.

[43]  F. Illuminati,et al.  Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels , 2010, 1010.0442.

[44]  Hwang Lee,et al.  Bounds on quantum multiple-parameter estimation with Gaussian state , 2014, The European Physical Journal D.

[45]  Nicolò Spagnolo,et al.  Quantum interferometry with three-dimensional geometry , 2012, Scientific Reports.

[46]  Hiroshi Imai,et al.  Geometry of optimal estimation scheme for SU(D) channels , 2007 .

[47]  J. Kołodyński,et al.  Quantum limits in optical interferometry , 2014, 1405.7703.

[48]  Braunstein Quantum limits on precision measurements of phase. , 1992, Physical review letters.

[49]  E Bagan,et al.  Aligning reference frames with quantum states. , 2001, Physical review letters.

[50]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[51]  October I Physical Review Letters , 2022 .

[52]  M. G. A. Paris,et al.  Optimal estimation of joint parameters in phase space , 2012, 1206.4867.

[53]  G. M. D'Ariano,et al.  Joint estimation of real squeezing and displacement , 2005 .

[54]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[55]  C. Caves,et al.  Fisher-Symmetric Informationally Complete Measurements for Pure States. , 2015, Physical review letters.

[56]  L. L. Sanchez-Soto,et al.  A complementarity-based approach to phase in finite-dimensional quantum systems , 2005 .

[57]  松本 啓史,et al.  A geometrical approach to quantum estimation theory = 量子推定理論の幾何学的方法 , 1998 .

[58]  Chiara Macchiavello Optimal estimation of multiple phases , 2003 .

[59]  B. M. Fulk MATH , 1992 .

[60]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[61]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[62]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[63]  Marco Barbieri,et al.  Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry , 2012, 1206.0043.

[64]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[65]  Akio Fujiwara,et al.  Estimation of SU(2) operation and dense coding: An information geometric approach , 2001 .

[66]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .

[67]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[68]  V. Belavkin,et al.  Quantum stochastics and information : statistics, filtering, and control : University of Nottingham, UK, 15-22 July 2006 , 2008 .

[69]  F. Khalili,et al.  Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.

[70]  W. Wootters,et al.  Optimal detection of quantum information. , 1991, Physical review letters.

[71]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[72]  Marloes H. Maathuis,et al.  From Probability to Statistics and Back: High-Dimensional Models and Processes: A Festschrift in Honor of Jon A. Wellner , 2013 .

[73]  M. Kolobov The spatial behavior of nonclassical light , 1999 .

[74]  Masahito Hayashi,et al.  Asymptotic performance of optimal state estimation in qubit system , 2008 .

[75]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[76]  S. Knysh,et al.  Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise , 2013, 1307.0470.

[77]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[78]  Elisa Ercolessi,et al.  Symmetric logarithmic derivative for general n-level systems and the quantum Fisher information tensor for three-level systems , 2013, 1301.6500.

[79]  Marco G. Genoni,et al.  Quantum estimation of a two-phase spin rotation , 2012, 1211.7224.

[80]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[82]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[83]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[84]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[85]  I. Tamm,et al.  The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .

[86]  Iván A. Contreras,et al.  On the geometry of mixed states and the Fisher information tensor , 2014, 1501.00054.

[87]  Animesh Datta,et al.  Gaussian systems for quantum-enhanced multiple phase estimation , 2016, 1605.04819.

[88]  A. Acin,et al.  Optimal estimation of quantum dynamics , 2001 .

[89]  Marco G. Genoni,et al.  Joint estimation of phase and phase diffusion for quantum metrology , 2014, Nature Communications.

[90]  Rafal Demkowicz-Dobrzanski,et al.  Optimal state for keeping reference frames aligned and the platonic solids , 2008, 0805.3637.

[91]  Samuel L. Braunstein,et al.  How large a sample is needed for the maximum likelihood estimator to be approximately Gaussian , 1992 .

[92]  L. Davidovich,et al.  Quantum metrological limits via a variational approach. , 2012, Physical review letters.

[93]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[94]  Heng Fan,et al.  Quantum Metrological Bounds for Vector Parameter in Presence of Noise , 2014, 1402.6197.

[95]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[96]  Andrea Smirne,et al.  Ultimate Precision Limits for Noisy Frequency Estimation. , 2015, Physical review letters.

[97]  R. Gill,et al.  Optimal full estimation of qubit mixed states , 2005, quant-ph/0510158.

[98]  Masahito Hayashi Asymptotic theory of quantum statistical inference : selected papers , 2005 .

[99]  R. Gill,et al.  State estimation for large ensembles , 1999, quant-ph/9902063.

[100]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[101]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[102]  D. Petz,et al.  Geometries of quantum states , 1996 .

[103]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[104]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[105]  Chuang Quantum algorithm for distributed clock synchronization , 2000, Physical review letters.

[106]  U. Faber Asymptotics In Statistics Some Basic Concepts , 2016 .

[107]  Carl W. Helstrom,et al.  The minimum variance of estimates in quantum signal detection , 1968, IEEE Trans. Inf. Theory.

[108]  R. Adhikari,et al.  Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.

[109]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[110]  Manuel A. Ballester Estimation of unitary quantum operations , 2004 .

[111]  C. Baccigalupi,et al.  Gravitational wave astronomy: the current status , 2015, Science China Physics, Mechanics & Astronomy.

[112]  Xing Xiao,et al.  Multiple phase estimation in quantum cloning machines , 2014 .

[113]  Jason F. Ralph,et al.  The role of entanglement in calibrating optical quantum gyroscopes , 2015, 1505.06321.

[114]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[115]  Hiroshi Imai,et al.  Quantum parameter estimation of a generalized Pauli channel , 2003 .

[116]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[117]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[118]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[119]  Heng Fan,et al.  Quantum-enhanced metrology for multiple phase estimation with noise , 2013, Scientific Reports.