Multi-parameter quantum metrology
暂无分享,去创建一个
Tillmann Baumgratz | Animesh Datta | Magdalena Szczykulska | A. Datta | T. Baumgratz | M. Szczykulska
[1] Jacob Ziv,et al. Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.
[2] C. Geyer. Supplementary Material for "Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity" , 2005, 1206.4762.
[3] Li Jing,et al. Fitting magnetic field gradient with Heisenberg-scaling accuracy , 2014, Scientific Reports.
[4] Jonas Kahn,et al. LOCAL ASYMPTOTIC NORMALITY AND OPTIMAL ESTIMATION FOR D-DIMENSIONAL QUANTUM SYSTEMS , 2008 .
[5] Animesh Datta,et al. Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.
[6] Hiroshi Nagaoka,et al. Quantum Fisher metric and estimation for pure state models , 1995 .
[7] J. Kahn,et al. Optimal Estimation of Qubit States with Continuous Time Measurements , 2006, quant-ph/0608074.
[8] Madalin Guta,et al. Information geometry and local asymptotic normality for multi-parameter estimation of quantum Markov dynamics , 2016, 1601.04355.
[9] W. Marsden. I and J , 2012 .
[10] R. Gill,et al. On asymptotic quantum statistical inference , 2011, 1112.2078.
[11] Hiroshi Nagaoka,et al. An estimation theoretical characterization of coherent states , 1999 .
[12] P. Sekatski,et al. Quantum metrology for the Ising Hamiltonian with transverse magnetic field , 2015, 1502.06459.
[13] Zach DeVito,et al. Opt , 2017 .
[14] M. Paternostro,et al. Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction , 2015 .
[15] Alex Monras,et al. Information geometry of Gaussian channels , 2009, 0911.1558.
[16] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[17] Mankei Tsang,et al. Quantum limit for two-dimensional resolution of two incoherent optical point sources , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).
[18] E. Ercolessi,et al. Geometry of mixed states for a q-bit and the quantum Fisher information tensor , 2012 .
[19] Joseph Fitzsimons,et al. Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.
[20] Thomas M. Cover,et al. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .
[21] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[22] D. Petz. Monotone metrics on matrix spaces , 1996 .
[23] Jing Liu,et al. Quantum multiparameter metrology with generalized entangled coherent state , 2014, 1409.6167.
[24] J. Jespersen,et al. The Euro , 2016 .
[25] Jean Kovalevsky,et al. The development of modern metrology and its role today , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[26] V. Belavkin. Generalized uncertainty relations and efficient measurements in quantum systems , 1976, quant-ph/0412030.
[27] Katarzyna Macieszczak. The Zeno limit in frequency estimation with non-Markovian environments , 2014 .
[28] John M. Martinis,et al. Qubit metrology for building a fault-tolerant quantum computer , 2015, npj Quantum Information.
[29] P. Humphreys,et al. Quantum enhanced multiple phase estimation. , 2013, Physical review letters.
[30] Jonas Kahn. Fast rate estimation of a unitary operation in SU(d) , 2007 .
[31] C. Geyer. Supplementary Material for "Asymptotics of Maximum Likelihood without the LLN or CLT or Sample Size Going to Infinity" , 2005, 1206.4762.
[32] Holland,et al. Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.
[33] Hugo Cable,et al. Quantum-enhanced tomography of unitary processes , 2014, 1402.2897.
[34] J. Kahn,et al. Local Asymptotic Normality for Finite Dimensional Quantum Systems , 2008, 0804.3876.
[35] Warwick P. Bowen,et al. Quantum metrology and its application in biology , 2014, 1409.0950.
[36] D. Vernon. Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.
[37] Massar,et al. Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.
[38] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[39] Carl W. Helstrom,et al. Noncommuting observables in quantum detection and estimation theory , 1974, IEEE Trans. Inf. Theory.
[40] C. Helstrom. Quantum detection and estimation theory , 1969 .
[41] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[42] M. Ballester,et al. Entanglement is not very useful for estimating multiple phases , 2004, quant-ph/0403190.
[43] F. Illuminati,et al. Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels , 2010, 1010.0442.
[44] Hwang Lee,et al. Bounds on quantum multiple-parameter estimation with Gaussian state , 2014, The European Physical Journal D.
[45] Nicolò Spagnolo,et al. Quantum interferometry with three-dimensional geometry , 2012, Scientific Reports.
[46] Hiroshi Imai,et al. Geometry of optimal estimation scheme for SU(D) channels , 2007 .
[47] J. Kołodyński,et al. Quantum limits in optical interferometry , 2014, 1405.7703.
[48] Braunstein. Quantum limits on precision measurements of phase. , 1992, Physical review letters.
[49] E Bagan,et al. Aligning reference frames with quantum states. , 2001, Physical review letters.
[50] Akio Fujiwara,et al. Quantum channel identification problem , 2001 .
[51] October I. Physical Review Letters , 2022 .
[52] M. G. A. Paris,et al. Optimal estimation of joint parameters in phase space , 2012, 1206.4867.
[53] G. M. D'Ariano,et al. Joint estimation of real squeezing and displacement , 2005 .
[54] C. W. Helstrom,et al. Minimum mean-squared error of estimates in quantum statistics , 1967 .
[55] C. Caves,et al. Fisher-Symmetric Informationally Complete Measurements for Pure States. , 2015, Physical review letters.
[56] L. L. Sanchez-Soto,et al. A complementarity-based approach to phase in finite-dimensional quantum systems , 2005 .
[57] 松本 啓史,et al. A geometrical approach to quantum estimation theory = 量子推定理論の幾何学的方法 , 1998 .
[58] Chiara Macchiavello. Optimal estimation of multiple phases , 2003 .
[59] B. M. Fulk. MATH , 1992 .
[60] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[61] G. Tóth,et al. Quantum metrology from a quantum information science perspective , 2014, 1405.4878.
[62] O. Barndorff-Nielsen,et al. Fisher information in quantum statistics , 1998, quant-ph/9808009.
[63] Marco Barbieri,et al. Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry , 2012, 1206.0043.
[64] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[65] Akio Fujiwara,et al. Estimation of SU(2) operation and dense coding: An information geometric approach , 2001 .
[66] Carlton M. Caves,et al. Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .
[67] Yossef Steinberg,et al. Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.
[68] V. Belavkin,et al. Quantum stochastics and information : statistics, filtering, and control : University of Nottingham, UK, 15-22 July 2006 , 2008 .
[69] F. Khalili,et al. Quantum Measurement Theory in Gravitational-Wave Detectors , 2012, Living Reviews in Relativity.
[70] W. Wootters,et al. Optimal detection of quantum information. , 1991, Physical review letters.
[71] Keiji matsumoto. A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .
[72] Marloes H. Maathuis,et al. From Probability to Statistics and Back: High-Dimensional Models and Processes: A Festschrift in Honor of Jon A. Wellner , 2013 .
[73] M. Kolobov. The spatial behavior of nonclassical light , 1999 .
[74] Masahito Hayashi,et al. Asymptotic performance of optimal state estimation in qubit system , 2008 .
[75] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[76] S. Knysh,et al. Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise , 2013, 1307.0470.
[77] Brian J. Smith,et al. Optimal quantum phase estimation. , 2008, Physical review letters.
[78] Elisa Ercolessi,et al. Symmetric logarithmic derivative for general n-level systems and the quantum Fisher information tensor for three-level systems , 2013, 1301.6500.
[79] Marco G. Genoni,et al. Quantum estimation of a two-phase spin rotation , 2012, 1211.7224.
[80] Ehud Weinstein,et al. A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.
[82] S. Lloyd,et al. Quantum metrology. , 2005, Physical review letters.
[83] John Preskill,et al. Quantum information and precision measurement , 1999, quant-ph/9904021.
[84] G. D’Ariano,et al. Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.
[85] I. Tamm,et al. The Uncertainty Relation Between Energy and Time in Non-relativistic Quantum Mechanics , 1991 .
[86] Iván A. Contreras,et al. On the geometry of mixed states and the Fisher information tensor , 2014, 1501.00054.
[87] Animesh Datta,et al. Gaussian systems for quantum-enhanced multiple phase estimation , 2016, 1605.04819.
[88] A. Acin,et al. Optimal estimation of quantum dynamics , 2001 .
[89] Marco G. Genoni,et al. Joint estimation of phase and phase diffusion for quantum metrology , 2014, Nature Communications.
[90] Rafal Demkowicz-Dobrzanski,et al. Optimal state for keeping reference frames aligned and the platonic solids , 2008, 0805.3637.
[91] Samuel L. Braunstein,et al. How large a sample is needed for the maximum likelihood estimator to be approximately Gaussian , 1992 .
[92] L. Davidovich,et al. Quantum metrological limits via a variational approach. , 2012, Physical review letters.
[93] Sailes K. Sengijpta. Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .
[94] Heng Fan,et al. Quantum Metrological Bounds for Vector Parameter in Presence of Noise , 2014, 1402.6197.
[95] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[96] Andrea Smirne,et al. Ultimate Precision Limits for Noisy Frequency Estimation. , 2015, Physical review letters.
[97] R. Gill,et al. Optimal full estimation of qubit mixed states , 2005, quant-ph/0510158.
[98] Masahito Hayashi. Asymptotic theory of quantum statistical inference : selected papers , 2005 .
[99] R. Gill,et al. State estimation for large ensembles , 1999, quant-ph/9902063.
[100] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[101] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[102] D. Petz,et al. Geometries of quantum states , 1996 .
[103] S. Braunstein,et al. Statistical distance and the geometry of quantum states. , 1994, Physical review letters.
[104] J. Cirac,et al. Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.
[105] Chuang. Quantum algorithm for distributed clock synchronization , 2000, Physical review letters.
[106] U. Faber. Asymptotics In Statistics Some Basic Concepts , 2016 .
[107] Carl W. Helstrom,et al. The minimum variance of estimates in quantum signal detection , 1968, IEEE Trans. Inf. Theory.
[108] R. Adhikari,et al. Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.
[109] E. Barankin. Locally Best Unbiased Estimates , 1949 .
[110] Manuel A. Ballester. Estimation of unitary quantum operations , 2004 .
[111] C. Baccigalupi,et al. Gravitational wave astronomy: the current status , 2015, Science China Physics, Mechanics & Astronomy.
[112] Xing Xiao,et al. Multiple phase estimation in quantum cloning machines , 2014 .
[113] Jason F. Ralph,et al. The role of entanglement in calibrating optical quantum gyroscopes , 2015, 1505.06321.
[114] Horace P. Yuen,et al. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.
[115] Hiroshi Imai,et al. Quantum parameter estimation of a generalized Pauli channel , 2003 .
[116] Konrad Banaszek,et al. Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.
[117] G Chiribella,et al. Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.
[118] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[119] Heng Fan,et al. Quantum-enhanced metrology for multiple phase estimation with noise , 2013, Scientific Reports.