A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains

Abstract Time-dependent advection–diffusion–reaction and diffusion–reaction equations are used as models in biology, chemistry, physics, and engineering. As representative examples, we focus on a chemotaxis model and a Turing system from biology and apply a local radial basis function method to numerically approximate the solutions. The numerical method can efficiently approximate large scale problems in complexly shaped domains.

[1]  Diego Rossinelli,et al.  Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids , 2011, SIAM J. Sci. Comput..

[2]  Philip K. Maini,et al.  Boundary-driven instability , 1997 .

[3]  Philip Ball,et al.  The Self-Made Tapestry: Pattern Formation in Nature , 1999 .

[4]  P K Maini,et al.  A two-dimensional numerical study of spatial pattern formation in interacting Turing systems , 1999, Bulletin of mathematical biology.

[5]  E. Ecer,et al.  Numerical Linear Algebra and Applications , 1995, IEEE Computational Science and Engineering.

[6]  W. Madych,et al.  Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .

[7]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[8]  Quan Shen,et al.  Numerical solution of the Sturm–Liouville problem with local RBF-based differential quadrature collocation method , 2011, Int. J. Comput. Math..

[9]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[10]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[11]  A. I. Tolstykh,et al.  On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .

[12]  Holger Wendland,et al.  Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..

[13]  Andrew J. Wathen,et al.  A model for colour pattern formation in the butterfly wing of Papilio dardanus , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  Radek Erban,et al.  STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB , 2011, Bioinform..

[15]  Michael Jaye,et al.  Modeling Differential Equations in Biology , 2001 .

[16]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[17]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[18]  Scott A. Sarra,et al.  Radial basis function approximation methods with extended precision floating point arithmetic , 2011 .

[19]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[20]  Jui-Ling Yu,et al.  An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. , 2007, Mathematical biosciences and engineering : MBE.

[21]  Willem Hundsdorfer,et al.  Accuracy and stability of splitting with stabilizing corrections , 2002 .

[22]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[23]  C. Shu,et al.  Multiquadric Finite Difference (MQ-FD) Method and its Application , 2009 .

[24]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[25]  Donna A. Calhoun,et al.  A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes , 2009, SIAM J. Sci. Comput..

[26]  D. A. Field Qualitative measures for initial meshes , 2000 .

[27]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[28]  A RBF Based Local Gridfree Scheme for Unsteady Convection-Diffusion Problems , 2010 .

[29]  Alexander Kurganov,et al.  New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..

[30]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[31]  A. I. Tolstykh,et al.  High-accuracy discretization methods for solid mechanics , 2003 .

[32]  Xun Jia,et al.  GPU-based fast gamma index calculation. , 2011, Physics in medicine and biology.

[33]  S. Sarra A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs , 2008 .

[34]  Elisabeth Larsson,et al.  Stable computations with Gaussian radial basis functions in 2-D , 2009 .

[35]  Michael J. McCourt,et al.  Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..

[36]  Alexander Kurganov,et al.  A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models , 2008, Numerische Mathematik.

[37]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[38]  S. Sarra,et al.  Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .

[39]  L. G. Stern,et al.  Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.

[40]  Tobin A. Driscoll,et al.  Eigenvalue stability of radial basis function discretizations for time-dependent problems , 2006, Comput. Math. Appl..

[41]  Michael L. Overton,et al.  Numerical Computing with IEEE Floating Point Arithmetic , 2001 .

[42]  Robert Dillon,et al.  Pattern formation in generalized Turing systems , 1994 .

[43]  Michael W. Smiley,et al.  An efficient implementation of a numerical method for a chemotaxis system , 2009, Int. J. Comput. Math..

[44]  J. Murray,et al.  Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.

[45]  R A Barrio,et al.  Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[47]  H. Berg,et al.  Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.

[48]  Andrew J. Wathen,et al.  A moving grid finite element method applied to a model biological pattern generator , 2003 .

[49]  G. Fasshauer,et al.  STABLE EVALUATION OF GAUSSIAN RBF INTERPOLANTS , 2011 .

[50]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[51]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[52]  Bamdad Hosseini,et al.  Solution of Burgers’ Equation Using a Local-RBF Meshless Method , 2011 .