A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains
暂无分享,去创建一个
[1] Diego Rossinelli,et al. Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids , 2011, SIAM J. Sci. Comput..
[2] Philip K. Maini,et al. Boundary-driven instability , 1997 .
[3] Philip Ball,et al. The Self-Made Tapestry: Pattern Formation in Nature , 1999 .
[4] P K Maini,et al. A two-dimensional numerical study of spatial pattern formation in interacting Turing systems , 1999, Bulletin of mathematical biology.
[5] E. Ecer,et al. Numerical Linear Algebra and Applications , 1995, IEEE Computational Science and Engineering.
[6] W. Madych,et al. Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .
[7] A. M. Turing,et al. The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.
[8] Quan Shen,et al. Numerical solution of the Sturm–Liouville problem with local RBF-based differential quadrature collocation method , 2011, Int. J. Comput. Math..
[9] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[10] E. Kansa. Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .
[11] A. I. Tolstykh,et al. On using radial basis functions in a “finite difference mode” with applications to elasticity problems , 2003 .
[12] Holger Wendland,et al. Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..
[13] Andrew J. Wathen,et al. A model for colour pattern formation in the butterfly wing of Papilio dardanus , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[14] Radek Erban,et al. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB , 2011, Bioinform..
[15] Michael Jaye,et al. Modeling Differential Equations in Biology , 2001 .
[16] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[17] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[18] Scott A. Sarra,et al. Radial basis function approximation methods with extended precision floating point arithmetic , 2011 .
[19] J. Lambert. Numerical Methods for Ordinary Differential Equations , 1991 .
[20] Jui-Ling Yu,et al. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. , 2007, Mathematical biosciences and engineering : MBE.
[21] Willem Hundsdorfer,et al. Accuracy and stability of splitting with stabilizing corrections , 2002 .
[22] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[23] C. Shu,et al. Multiquadric Finite Difference (MQ-FD) Method and its Application , 2009 .
[24] Andrew D. Back,et al. Radial Basis Functions , 2001 .
[25] Donna A. Calhoun,et al. A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes , 2009, SIAM J. Sci. Comput..
[26] D. A. Field. Qualitative measures for initial meshes , 2000 .
[27] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[28] A RBF Based Local Gridfree Scheme for Unsteady Convection-Diffusion Problems , 2010 .
[29] Alexander Kurganov,et al. New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..
[30] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[31] A. I. Tolstykh,et al. High-accuracy discretization methods for solid mechanics , 2003 .
[32] Xun Jia,et al. GPU-based fast gamma index calculation. , 2011, Physics in medicine and biology.
[33] S. Sarra. A numerical study of the accuracy and stability of symmetric and asymmetric RBF collocation methods for hyperbolic PDEs , 2008 .
[34] Elisabeth Larsson,et al. Stable computations with Gaussian radial basis functions in 2-D , 2009 .
[35] Michael J. McCourt,et al. Stable Evaluation of Gaussian Radial Basis Function Interpolants , 2012, SIAM J. Sci. Comput..
[36] Alexander Kurganov,et al. A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models , 2008, Numerische Mathematik.
[37] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[38] S. Sarra,et al. Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations , 2009 .
[39] L. G. Stern,et al. Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.
[40] Tobin A. Driscoll,et al. Eigenvalue stability of radial basis function discretizations for time-dependent problems , 2006, Comput. Math. Appl..
[41] Michael L. Overton,et al. Numerical Computing with IEEE Floating Point Arithmetic , 2001 .
[42] Robert Dillon,et al. Pattern formation in generalized Turing systems , 1994 .
[43] Michael W. Smiley,et al. An efficient implementation of a numerical method for a chemotaxis system , 2009, Int. J. Comput. Math..
[44] J. Murray,et al. Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.
[45] R A Barrio,et al. Turing patterns on a sphere. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[46] C. Shu,et al. Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .
[47] H. Berg,et al. Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.
[48] Andrew J. Wathen,et al. A moving grid finite element method applied to a model biological pattern generator , 2003 .
[49] G. Fasshauer,et al. STABLE EVALUATION OF GAUSSIAN RBF INTERPOLANTS , 2011 .
[50] K. Painter,et al. A User's Guide to Pde Models for Chemotaxis , 2022 .
[51] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[52] Bamdad Hosseini,et al. Solution of Burgers’ Equation Using a Local-RBF Meshless Method , 2011 .