Leaching from municipal solid waste incineration residues

[1]  Toshinori Kojima,et al.  Behavior of B, Cr, Se, As, Pb, Cd, and Mo present in waste leachates generated from combustion residues during the formation of ettringite , 2006, Environmental toxicology and chemistry.

[3]  Janus T Kirkeby,et al.  Environmental assessment of solid waste systems and technologies: EASEWASTE , 2006, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[4]  T. Taylor Eighmy,et al.  An approach for estimation of contaminant release during utilization and disposal of municipal waste combustion residues , 1996 .

[5]  S. Lesch,et al.  Predicting Boron Adsorption by Soils Using Soil Chemical Parameters in the Constant Capacitance Model , 2000 .

[6]  D. Guyonnet,et al.  Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. , 2002, Waste management.

[7]  O. Hjelmar Leachate From Land Disposal of Coal Fly Ash , 1990 .

[8]  T. Astrup,et al.  Assessment of long-term leaching from waste incineration air-pollution-control residues. , 2006, Waste management.

[9]  M. Hauschild,et al.  Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE. , 2007, Waste management.

[10]  Thomas Fruergaard Astrup,et al.  Management of APC residues from W-t-E plants. An overview of management options and treatment methods , 2008 .

[11]  J. Donald Rimstidt,et al.  Mineralogy and Surface Properties of Municipal Solid Waste Ash , 1993 .

[12]  David S. Kosson,et al.  Developments in the characterisation of waste materials for environmental impact assessment purposes , 2006 .

[13]  Roland Hischier,et al.  ecoinvent : Services Waste Treatment and Assessment of Long-Term Emissions , 2005 .

[14]  Duane C. Hanselman,et al.  Mastering MATLAB , 2004 .

[15]  Carlo Vandecasteele,et al.  Antimony leaching from uncarbonated and carbonated MSWI bottom ash. , 2006, Journal of hazardous materials.

[16]  S. Sakai,et al.  Release of metals from MSW I fly ash and availability in alkali condition , 1996 .

[17]  M. Hauschild,et al.  Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. , 2007, Waste management.

[18]  A. Fällman Leaching of chromium and barium from steel slag in laboratory and field tests — a solubility controlled process? , 2000 .

[20]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[21]  F. Morel,et al.  Surface Complexation Modeling: Hydrous Ferric Oxide , 1990 .

[22]  R. E. Jessup,et al.  Flow interruption: A method for investigating sorption nonequilibrium , 1989 .

[23]  J. Meeussen,et al.  ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. , 2003, Environmental science & technology.

[24]  T. Taylor Eighmy,et al.  Petrogenesis of municipal solid waste combustion bottom ash , 1999 .

[25]  S. Lesch,et al.  Predicting Molybdenum Adsorption by Soils Using Soil Chemical Parameters in the Constant Capacitance Model , 2003, Soil Science Society of America Journal.

[26]  M. Brusseau,et al.  Using flow interruption to identify factors causing nonideal contaminant transport , 1997 .

[27]  J. Dijkstra Development of a consistent geochemical modelling approach for leaching and reactive transport prosesses in contaminated materials , 2007 .

[28]  P. Brown,et al.  PhreeqC modeling of Friedel's salt equilibria at 23±1 °C , 2004 .

[29]  O. Hjelmar,et al.  Municipal Solid Waste Incinerator Residues , 1997 .

[30]  A. Felmy,et al.  The solubility of (Ba,Sr)SO4 precipitates: Thermodynamic equilibrium and reaction path analysis , 1993 .

[31]  Jiri Hyks,et al.  Influence of test conditions on solubility controlled leaching predictions from air-pollution-control residues , 2007, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[32]  R. Comans,et al.  Leaching of heavy metals from contaminated soils: an experimental and modeling study. , 2004, Environmental science & technology.

[33]  M. Ohtsubo,et al.  Leachability of municipal solid waste ashes in simulated landfill conditions. , 2007, Waste management.

[34]  L. Blakemore Methods for chemical analysis of soils , 1972 .

[35]  T. H. Christensen,et al.  Complexation of Cu and Pb by DOC in polluted groundwater: A comparison of experimental data and predictions by computer speciation models (WHAM and MINTEQA2) , 1999 .

[36]  Michael Kersten,et al.  Speciation of trace metals in leachate from a MSWI bottom ash landfill , 1997 .

[37]  Christian Ludwig,et al.  Hydrological and geochemical factors controlling the leaching of cemented MSWI air pollution control residues : A lysimeter field study , 2000 .

[38]  J. Meima,et al.  Complexation of Cu with Dissolved Organic Carbon in Municipal Solid Waste Incinerator Bottom Ash Leachates , 1999 .

[39]  Rob N.J. Comans,et al.  Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash , 1997 .

[40]  Peter Baccini,et al.  Chemical behaviour of municipal solid waste incinerator bottom ash in monofills , 1992 .

[41]  Thomas Astrup,et al.  Assessment of long-term pH developments in leachate from waste incineration residues , 2006, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[42]  G. Dóka,et al.  Waste Treatment and Assessment of Long-Term Emissions (8pp) , 2005 .

[43]  D. Kinniburgh,et al.  Generic NICA-Donnan model parameters for metal-ion binding by humic substances. , 2001, Environmental science & technology.

[44]  Ming-Yen Wey,et al.  Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. , 2006, Journal of hazardous materials.

[45]  Song Hu,et al.  Characterization of solid residues from municipal solid waste incinerator , 2004 .

[46]  Ole Hjelmar,et al.  Utilisation of MSWI bottom ash as sub-base in road construction: first results from a large-scale test site. , 2007, Journal of hazardous materials.

[47]  R. Comans,et al.  Contribution of natural organic matter to copper leaching from municipal solid waste incinerator bottom ash. , 2004, Environmental science & technology.

[48]  Christian Riber,et al.  Experience with the use of LCA-modelling (EASEWASTE) in waste management , 2007, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[49]  S. Goldberg Geochemistry, Groundwater and Pollution , 2006 .

[50]  R. Narayan Swamy,et al.  Stability of Friedel's salt in carbonated concrete structural elements , 1996 .

[51]  H. D. Sloot Quick techniques for evaluating the leaching properties of waste materials: their relation to decisions on utilization and disposal , 1998 .

[52]  T. Theis,et al.  An experimental and analytical approach to understanding the dynamic leaching from municipal solid waste combustion residue , 2002 .

[53]  N. Schuwirth,et al.  Comparability of and Alternatives to Leaching Tests for the Assessment of the Emission of Inorganic Soil Contamination (11 pp) , 2006 .

[54]  R. Comans,et al.  The leaching of major and trace elements from MSWI bottom ash as a function of pH and time , 2006 .

[55]  G. Libourel,et al.  Characterization of Flue Gas Residues from Municipal Solid Waste Combustors , 1998 .

[56]  J. Rimstidt,et al.  Interaction of municipal solid waste ash with water. , 1994, Environmental science & technology.

[57]  J. E. Krzanowski,et al.  An analytical electron microscopy investigation of municipal solid waste incineration bottom ash , 1998 .

[58]  R. Barna,et al.  Leaching behavior of pollutants in stabilized/solidified wastes , 1997 .

[59]  J. Meima,et al.  Application of Surface Complexation/Precipitation Modeling to Contaminant Leaching from Weathered Municipal Solid Waste Incinerator Bottom Ash , 1998 .

[60]  H. A. van der Sloot,et al.  Characteristics, treatment and utilization of residues from municipal waste incineration. , 2001, Waste management.

[61]  E. Reardon,et al.  Removal of B, Cr, Mo, and Se from wastewater by incorporation into hydrocalumite and ettringite. , 2003, Environmental science & technology.

[62]  P. M. Erickson,et al.  Comprehensive Approach toward Understanding Element Speciation and Leaching Behavior in Municipal Solid Waste Incineration Electrostatic Precipitator Ash. , 1995, Environmental science & technology.

[63]  C. Zevenbergen,et al.  Morphological and Chemical Properties of MSWI Bottom Ash with Respect to the Glassy Constituents , 1994 .

[64]  T Astrup,et al.  Chromium release from waste incineration air-pollution-control residues. , 2005, Environmental science & technology.

[65]  B. Scheetz,et al.  Ettringite and CSH Portland cement phases for waste ion immobilization: A review , 1996 .

[66]  Thomas Astrup,et al.  Geochemical modeling of leaching from MSWI air-pollution-control residues. , 2006, Environmental science & technology.

[67]  Andrea Ulrich,et al.  Hydrological and geochemical factors affecting leachate composition in municipal solid waste incinerator bottom ash. Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland , 1999 .

[68]  Ole Hjelmar,et al.  Disposal strategies for municipal solid waste incineration residues , 1996 .

[69]  L. Eary,et al.  Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues , 1990 .

[70]  R. Comans,et al.  Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum. , 2006, Environmental science & technology.

[71]  H. A. van der Sloot,et al.  Process identification and model development of contaminant transport in MSWI bottom ash. , 2002, Waste management.

[72]  T. Kojima,et al.  Compositions and leaching behaviours of combustion residues , 2006 .

[73]  G. Luther,et al.  PARTITIONING AND SPECIATION OF SOLID PHASE IRON IN SALTMARSH SEDIMENTS , 1994 .

[74]  T. Astrup,et al.  Effect of drying on leaching testing of treated municipal solid waste incineration APC-residues , 2008, Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA.

[75]  Michael Kersten,et al.  Leaching behaviour and solubility — Controlling solid phases of heavy metals in municipal solid waste incinerator ash , 1996 .

[76]  L. Eary,et al.  Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements. , 1990 .

[77]  O. Hjelmar EVALUATION OF ENVIRONMENTAL ASPECTS OF ALTERNATIVE MATERIALS USING AN INTEGRATED APPROACH ASSISTED BY A DATABASE/EXPERT SYSTEM , 2003 .

[78]  E. Collina,et al.  The analytical characterization of municipal solid waste incinerator fly ash: methods and preliminary results , 1999 .