Investigation of Ionospheric Small‐Scale Plasma Structures Associated With Particle Precipitation

We investigate the role of auroral particle precipitation in small-scale (below hundreds of meters) plasma structuring in the auroral ionosphere over the Arctic. To the scope, we together analyse data recorded by an Ionospheric Scintillation Monitor Receiver (ISMR) of Global Navigation Satellite System (GNSS) signals and by an All-Sky Camera located in Longyearbyen, Svalbard (Norway). We leverage on the raw GNSS samples provided at 50 Hz by the ISMR to evaluate amplitude and phase scintillation indices at 1 s time resolution and the Ionosphere-Free Linear Combination at 20 ms time resolution. The simultaneous use of the 1 s GNSS-based scintillation indices allows identifying the scale size of the irregularities involved in plasma structuring in the range of small (up to few hundreds of meters) and medium-scale size ranges (up to few kilometers) for GNSS frequencies and observational geometry. Additionally, they allow identifying the diffractive and refractive nature of the found fluctuations on the recorded GNSS signals. Six strong auroral events and their effects on plasma structuring are studied. Plasma structuring down to scales of hundreds of meters are seen when strong gradients in auroral emissions at 557.7 nm cross the line of sight between the GNSS satellite and receiver. Local magnetic field measurements confirm small-scale structuring processes coinciding with intensification of ionospheric currents. Since 557.7 nm emissions primarily originate from the ionospheric E-region, plasma instabilities from particle precipitation at E-region altitudes are considered to be responsible for the signatures of small-scale plasma structuring highlighted in the GNSS scintillation data.

[1]  L. Clausen,et al.  Ionospheric Plasma Structuring in Relation to Auroral Particle Precipitation , 2022, Journal of Space Weather and Space Climate.

[2]  K. Oksavik,et al.  The refractive and diffractive contributions to GPS signal scintillation at high latitude during the geomagnetic storm on 7-8 September 2017 , 2022, Journal of Space Weather and Space Climate.

[3]  Q.‐H. Zhang,et al.  Dependencies of GPS Scintillation Indices on the Ionospheric Plasma Drift and Rate of Change of TEC Around the Dawn Sector of the Polar Ionosphere , 2022, Journal of Geophysical Research: Space Physics.

[4]  K. Kauristie,et al.  Magnetic local time (MLT) dependence of auroral peak emission height and morphology , 2022, Annales Geophysicae.

[5]  A. Cicone,et al.  Multi-scale response of the high-latitude topside ionosphere to geospace forcing , 2022, Advances in Space Research.

[6]  J. Conroy,et al.  Statistical Analysis of Refractive and Diffractive Scintillation at High Latitudes , 2022, Radio Science.

[7]  M. Oppenheim,et al.  Effects of Electron Precipitation on E‐Region Instabilities: Theoretical Analysis , 2021, Journal of Geophysical Research: Space Physics.

[8]  G. Crowley,et al.  Auroral E‐Region as a Source Region for Ionospheric Scintillation , 2021, Journal of Geophysical Research: Space Physics.

[9]  P. Jayachandran,et al.  GPS Scintillations and TEC Variations in Association With a Polar Cap Arc , 2021, Journal of Geophysical Research: Space Physics.

[10]  D. Akos,et al.  Performance of 6 Different Global Navigation Satellite System Receivers at Low Latitude Under Moderate and Strong Scintillation , 2021, Earth and Space Science.

[11]  Haomin Zhou,et al.  Numerical analysis for iterative filtering with new efficient implementations based on FFT , 2021, Numerische Mathematik.

[12]  J. Wu,et al.  Dayside Field‐Aligned Current Impacts on Ionospheric Irregularities , 2020, Geophysical Research Letters.

[13]  Massimo Cafaro,et al.  Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique , 2019, GPS Solutions.

[14]  L. Spogli,et al.  The ionospheric irregularities climatology over Svalbard from solar cycle 23 , 2019, Scientific Reports.

[15]  P. T. Jayachandran,et al.  Determination of the Refractive Contribution to GPS Phase “Scintillation” , 2019, Journal of Geophysical Research: Space Physics.

[16]  Antonio Cicone,et al.  Iterative filtering as a direct method for the decomposition of nonstationary signals , 2018, Numerical Algorithms.

[17]  P. T. Jayachandran,et al.  Experimental Evidence on the Dependence of the Standard GPS Phase Scintillation Index on the Ionospheric Plasma Drift Around Noon Sector of the Polar Ionosphere , 2018 .

[18]  Frank D. Lind,et al.  GPS Signal Corruption by the Discrete Aurora: Precise Measurements From the Mahali Experiment , 2017 .

[19]  J. Moen,et al.  Space weather challenges of the polar cap ionosphere , 2017, 1708.08617.

[20]  N. Ivchenko,et al.  Relation of anomalous F region radar echoes in the high-latitude ionosphere to auroral precipitation , 2017 .

[21]  A. Kropotkin Formation of the small-scale structure of auroral electron precipitations , 2016 .

[22]  L. Clausen,et al.  Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora , 2015, 1606.02652.

[23]  J. Moen,et al.  Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere , 2015, 1606.02654.

[24]  Sandro M. Radicella,et al.  Estimation of higher‐order ionospheric errors in GNSS positioning using a realistic 3‐D electron density model , 2012 .

[25]  Bruno Bougard,et al.  CIGALA: Challenging the solar maximum in Brazil with PolaRxS , 2011 .

[26]  Marcio Aquino,et al.  Bipolar climatology of GPS ionospheric scintillation at solar minimum , 2011 .

[27]  M. Oppenheim,et al.  Magnetosphere‐ionosphere coupling through E region turbulence: 1. Energy budget , 2011, 1103.2906.

[28]  Marcio Aquino,et al.  Climatology of GPS ionospheric scintillations over high and mid-latitude European regions , 2009 .

[29]  E. Tanskanen A comprehensive high‐throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined , 2009 .

[30]  Paul M. Kintner,et al.  GPS scintillation in the high arctic associated with an auroral arc , 2008 .

[31]  H. Bahcivan Plasma wave heating during extreme electric fields in the high‐latitude E region , 2007 .

[32]  Cathryn N. Mitchell,et al.  Wavelet analysis of GPS amplitude scintillation: A case study , 2007 .

[33]  Theodore L. Beach,et al.  Perils of the GPS phase scintillation index (σϕ) , 2006 .

[34]  Biagio Forte,et al.  Optimum detrending of raw GPS data for scintillation measurements at auroral latitudes , 2005 .

[35]  J. King,et al.  Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data , 2005 .

[36]  J. King,et al.  Solar Wind Spatial Scales in, and Comparisons of, Hourly Wind and ACE IMF and Plasma Data , 2004 .

[37]  Sandro M. Radicella,et al.  Problems in data treatment for ionospheric scintillation measurements , 2002 .

[38]  R. Greenwald,et al.  Dawn and dusk sector comparisons of small‐scale irregularities, convection, and particle precipitation in the high‐latitude ionosphere , 2002 .

[39]  S. Basu,et al.  Characteristics of plasma structuring in the cusp/cleft region at Svalbard , 1998 .

[40]  Rudolf A. Treumann,et al.  Advanced space plasma physics , 1997 .

[41]  A. J. Van Dierendonck,et al.  Ionospheric Scintillation Monitoring Using Commercial Single Frequency C/A Code Receivers , 1993 .

[42]  P. Kintner,et al.  The status of observations and theory of high latitude ionospheric and magnetospheric plasma turbulence , 1985 .

[43]  I. Schwartz,et al.  Ionospheric turbulence: Interchange instabilities and chaotic fluid behavior , 1984 .

[44]  M. J. Keskinen,et al.  Theories of high-latitude ionospheric irregularities: A review , 1982 .

[45]  J. St.‐Maurice,et al.  Anomalous heating of the polar E region by unstable plasma waves 1. Observations , 1981 .

[46]  R. Crane,et al.  Ionospheric scintillation , 1977, Proceedings of the IEEE.

[47]  N. D’angelo,et al.  Type II irregularities in the equatorial electrojet , 1970 .

[48]  R. Boström A model of the auroral electrojets , 1964 .

[49]  D. T. Farley A plasma instability resulting in field‐aligned irregularities in the ionosphere , 1963 .

[50]  B. H. Briggs,et al.  On the variation of radio star and satellite scintillations with zenith angle , 1963 .

[51]  O. Buneman,et al.  EXCITATION OF FIELD ALIGNED SOUND WAVES BY ELECTRON STREAMS , 1963 .

[52]  J. S. Hey,et al.  Fluctuations in Cosmic Radiation at Radio-Frequencies , 1946, Nature.

[53]  Massimo Cafaro,et al.  Adaptive Phase Detrending for GNSS Scintillation Detection: A Case Study Over Antarctica , 2022, IEEE Geoscience and Remote Sensing Letters.

[54]  Kung Chie Yeh,et al.  Radio wave scintillations in the ionosphere , 1982, Proceedings of the IEEE.

[55]  K. Schlegel Anomalous Heating of the Polar E Region 2. Theory by Unstable Plasma Waves , 1981 .

[56]  R. L. Leadabrand,et al.  Early results from the DNA Wideband satellite experiment—Complex‐signal scintillation , 1978 .