Asymptotic normality and consistency of semi-nonparametric regression estimators using an upwards F test truncation rule

Abstract The consistency and asymptotic normality of semi-nonparametric regression estimators are shown when the truncation parameter is selected by an upwards F test. Moreover, the same statements are also shown to apply to a large class of linear estimators. The article concludes with a discussion of F test critical value settings, and includes results from a simulation study which demonstrates that confidence interval coverage can be increased by varying the critical values in a nonstandard way.

[1]  A. Gallant,et al.  Unbiased determination of production technologies , 1982 .

[2]  Michelle H. L. Turnovsky,et al.  Energy Substitution, Separability, and Technical Progress in the Australian Iron and Steel Industry , 1984 .

[3]  C. L. Mallows Some comments on C_p , 1973 .

[4]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[6]  D. Fisher,et al.  Toward a consistent estimate of the demand for monies: An application of the fourier flexible form , 1985 .

[7]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[8]  A. Gallant,et al.  Estimating substitution elasticities with the Fourier cost function : Some Monte Carlo results , 1985 .

[9]  T. Wallace,et al.  Pretest Estimation in Regression: A Survey , 1977 .

[10]  Peter E. Rossi,et al.  Nonlinear dynamic structures , 1993 .

[11]  A. Gallant,et al.  Nonlinear Statistical Models , 1988 .

[12]  E. Berndt,et al.  Technology, Prices, and the Derived Demand for Energy , 1975 .

[13]  G. Wahba Bayesian "Confidence Intervals" for the Cross-validated Smoothing Spline , 1983 .

[14]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[15]  A. Gallant,et al.  Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications , 1989 .

[16]  S. R. Searle Linear Models , 1971 .

[17]  G. Tolstov Fourier Series , 1962 .

[18]  D. Jorgenson,et al.  Transcendental Logarithmic Utility Functions , 1975 .