Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland.

A model of three-dimensional shear wave velocity variations in the mantle reveals a tilted low velocity anomaly extending from the core-mantle boundary (CMB) region beneath the southeastern Atlantic Ocean into the upper mantle beneath eastern Africa. This anomaly suggests that Cenozoic flood basalt volcanism in the Afar region and active rifting beneath the East African Rift is linked to an extensive thermal anomaly at the CMB more than 45 degrees away. In contrast, a low velocity anomaly beneath Iceland is confined to the upper mantle.

[1]  C. Gable,et al.  Laboratory investigation of the interaction of off-axis mantle plumes and spreading centres , 1995, Nature.

[2]  H. Nataf,et al.  Seismological detection of a mantle plume? , 1993, Nature.

[3]  P. Silver,et al.  Dynamic topography, plate driving forces and the African superswell , 1998, Nature.

[4]  Thorne Lay,et al.  The core–mantle boundary layer and deep Earth dynamics , 1998, Nature.

[5]  T. Lay The Fate of Descending Slabs , 1994 .

[6]  P. Tapponnier,et al.  Propagation of rifting along the Arabia‐Somalia Plate Boundary: The Gulfs of Aden and Tadjoura , 1997 .

[7]  Hendrik Jan van Heijst,et al.  Measuring surface-wave overtone phase velocities using a mode-branch stripping technique , 1997 .

[8]  S. Robinson,et al.  The African Superswell , 1994 .

[9]  D. Yuen,et al.  Mesoscale structures in the transition zone: Dynamical consequences of boundary layer activities , 1998 .

[10]  S. Solomon,et al.  Seismic evidence for a lower-mantle origin of the Iceland plume , 1998, Nature.

[11]  R. Pik,et al.  Timing of the Ethiopian flood basalt event and implications for plume birth and global change , 1997, Nature.

[12]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[13]  R. Hilst,et al.  Compositional stratification in the deep mantle , 1999, Science.

[14]  B. Hager,et al.  — a H 03 Dynamically Supported Geoid Highs over Hotspots : Observation and Theory , 2008 .

[15]  W. J. Morgan,et al.  Convection Plumes in the Lower Mantle , 1971, Nature.

[16]  John H. Woodhouse,et al.  Determination of earthquake source parameters from waveform data for studies of global and regional seismicity , 1981 .

[17]  P. Tapponnier,et al.  On causal links between flood basalts and continental breakup , 1999 .

[18]  Harmen Bijwaard,et al.  Tomographic evidence for a narrow whole mantle plume below Iceland , 1999 .

[19]  Gabi Laske,et al.  CRUST 5.1: A global crustal model at 5° × 5° , 1998 .

[20]  M. A. Reynolds,et al.  Isotope Anomalies in Rare Gases , 1971 .

[21]  Robert W. Clayton,et al.  Lower mantle heterogeneity, dynamic topography and the geoid , 1985, Nature.

[22]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[23]  G. Laske,et al.  A shear - velocity model of the mantle , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  H. Fujimoto,et al.  Interaction of the upwelling plume with the phase and chemical boundary at the 670 km discontinuity: effects of temperature-dependent viscosity , 1994 .

[25]  C. Ebinger,et al.  Cenozoic magmatism throughout east Africa resulting from impact of a single plume , 1998, Nature.

[26]  Adam M. Dziewonski,et al.  Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6 , 1984 .

[27]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[28]  P. Silver,et al.  Deep Slabs, Geochemical Heterogeneity, and the Large-Scale Structure of Mantle Convection: Investigation of an Enduring Paradox , 1988 .

[29]  John H. Woodhouse,et al.  Mapping the upper mantle: Three‐dimensional modeling of earth structure by inversion of seismic waveforms , 1984 .