HSP101/PTEX mediates export of diverse malaria effector proteins into the host erythrocyte

[1]  H. Beck,et al.  Maurer's clefts, the enigma of Plasmodium falciparum , 2013, Proceedings of the National Academy of Sciences.

[2]  A. Cowman,et al.  Plasmodium nesting: remaking the erythrocyte from the inside out. , 2013, Annual review of microbiology.

[3]  G. McFadden,et al.  The Plasmodium translocon of exported proteins (PTEX) component thioredoxin‐2 is important for maintaining normal blood‐stage growth , 2013, Molecular microbiology.

[4]  T. Gilberger,et al.  Identification of New PNEPs Indicates a Substantial Non-PEXEL Exportome and Underpins Common Features in Plasmodium falciparum Protein Export , 2013, PLoS pathogens.

[5]  A. Cowman,et al.  Role of Plasmepsin V in Export of Diverse Protein Families from the Plasmodium falciparum Exportome , 2013, Traffic.

[6]  A. Cowman,et al.  Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes , 2013, Nature Communications.

[7]  H. Stunnenberg,et al.  Uncovering common principles in protein export of malaria parasites. , 2012, Cell host & microbe.

[8]  M. Llinás,et al.  Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state , 2012, Proceedings of the National Academy of Sciences.

[9]  S. Ralph,et al.  Biosynthesis, Localization, and Macromolecular Arrangement of the Plasmodium falciparum Translocon of Exported Proteins (PTEX)* , 2012, The Journal of Biological Chemistry.

[10]  S. Lindquist,et al.  Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers , 2012, Nature Communications.

[11]  T. Spielmann,et al.  Imaging of live malaria blood stage parasites. , 2012, Methods in enzymology.

[12]  K. Williamson,et al.  Functional Analysis of the Exported Type IV HSP40 Protein PfGECO in Plasmodium falciparum Gametocytes , 2011, Eukaryotic Cell.

[13]  L. Aravind,et al.  Malaria Parasite clag3 Genes Determine Channel-Mediated Nutrient Uptake by Infected Red Blood Cells , 2011, Cell.

[14]  D. Goldberg,et al.  Asparagine repeat function in a Plasmodium falciparum protein assessed via a regulatable fluorescent affinity tag , 2011, Proceedings of the National Academy of Sciences.

[15]  A. Cowman,et al.  Parasite‐encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum‐infected erythrocyte , 2010, Cellular microbiology.

[16]  T. Wandless,et al.  A general chemical method to regulate protein stability in the mammalian central nervous system. , 2010, Chemistry & biology.

[17]  Edwin Lasonder,et al.  Protein Export Marks the Early Phase of Gametocytogenesis of the Human Malaria Parasite Plasmodium falciparum* , 2010, Molecular & Cellular Proteomics.

[18]  D. Goldberg,et al.  Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte , 2009, Nature.

[19]  Eugene A. Kapp,et al.  An aspartyl protease directs malaria effector proteins to the host cell , 2009, Nature.

[20]  J. Dubremetz,et al.  Export of a Toxoplasma gondii Rhoptry Neck Protein Complex at the Host Cell Membrane to Form the Moving Junction during Invasion , 2009, PLoS pathogens.

[21]  C. Withers-Martinez,et al.  Subcellular Discharge of a Serine Protease Mediates Release of Invasive Malaria Parasites from Host Erythrocytes , 2007, Cell.

[22]  L. Tilley,et al.  Serum Lipoproteins Promote Efficient Presentation of the Malaria Virulence Protein PfEMP1 at the Erythrocyte Surface , 2007, Eukaryotic Cell.

[23]  Leann Tilley,et al.  Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. , 2007, The Biochemical journal.

[24]  L. Tilley,et al.  A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. , 2006, Molecular biology of the cell.

[25]  M. Fraser,et al.  High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  X. Su,et al.  Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. , 2005, Molecular and biochemical parasitology (Print).

[27]  Jun Liu,et al.  The Role of Plasmodium falciparum Food Vacuole Plasmepsins* , 2005, Journal of Biological Chemistry.

[28]  Melanie Rug,et al.  Targeting Malaria Virulence and Remodeling Proteins to the Host Erythrocyte , 2004, Science.

[29]  Travis Harrison,et al.  A Host-Targeting Signal in Virulence Proteins Reveals a Secretome in Malarial Infection , 2004, Science.

[30]  K. Fischer,et al.  A novel Plasmodium falciparum ring stage protein, REX, is located in Maurer's clefts. , 2004, Molecular and biochemical parasitology.

[31]  I. Gluzman,et al.  Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum , 2004, The Journal of cell biology.

[32]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[33]  D. Mattei,et al.  Pfsbp1, a Maurer's cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. , 2000, Molecular and biochemical parasitology.

[34]  D. Goldberg,et al.  Biosynthesis and Maturation of the Malaria Aspartic Hemoglobinases Plasmepsins I and II* , 1997, The Journal of Biological Chemistry.

[35]  Mark E. Wickham,et al.  Targeted Gene Disruption Shows That Knobs Enable Malaria-Infected Red Cells to Cytoadhere under Physiological Shear Stress , 1997, Cell.

[36]  C. Newbold,et al.  Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. , 1994, The Journal of biological chemistry.

[37]  Nirbhay Kumar,et al.  Induction and localization of Plasmodium falciparum stress proteins related to the heat shock protein 70 family. , 1991, Molecular and biochemical parasitology.

[38]  R. Anders,et al.  Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion , 1991, Infection and immunity.

[39]  H. Arnold,et al.  In vitro biosynthesis and membrane translocation of the serine rich protein of Plasmodium falciparum. , 1990, Molecular and biochemical parasitology.

[40]  E. Rock,et al.  Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin , 1987, Parasitology.

[41]  H. Ginsburg,et al.  Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. , 1985, Molecular and biochemical parasitology.

[42]  A. Tait,et al.  Antigens of the erythrocytes stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. , 1983, Molecular and biochemical parasitology.

[43]  Molecular strategies of parasitic invasion , 2022 .