Homotopic Distance and Generalized Motion Planning
暂无分享,去创建一个
E. Mac'ias-Virg'os | D. Mosquera-Lois | M. J. Pereira-S'aez | E. Macías-Virgós | M. J. Pereira-Sáez | D. Mosquera-Lois
[1] Michael Farber,et al. Topological complexity of configuration spaces , 2008, 0806.4111.
[2] R. Ho. Algebraic Topology , 2022 .
[3] A. Murillo,et al. Topological complexity of the work map , 2017, Journal of Topology and Analysis.
[4] Augustin Banyaga,et al. A proof of the Morse-Bott Lemma , 2004 .
[5] Jamie Scott. On the Topological Complexity of Maps , 2020, Topology and its Applications.
[6] Michael Reeken,et al. Stability of critical points under small perturbations Part I: Topological theory , 1972 .
[7] D. Koditschek,et al. Robot navigation functions on manifolds with boundary , 1990 .
[8] A. Gómez-Tato,et al. Trace map, Cayley transform and LS category of Lie groups , 2009, 0907.0751.
[9] E. MACÍAS–VIRGÓS,et al. Homotopic distance between maps , 2018, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] J. H. C. Whitehead,et al. Methodes Topologiques dans les problemes variationnels. I. Espaces a un nombre fini de dimensions , 1935 .
[11] Yuli B. Rudyak,et al. Lusternik-Schnirelmann theory for fixed points of maps , 2003 .
[12] E. Macías-Virgós,et al. Morse Theory and the Lusternik–Schnirelmann Category of Quaternionic Grassmannians , 2016, Proceedings of the Edinburgh Mathematical Society.
[13] Topological complexity of a map , 2018, Homology, Homotopy and Applications.
[14] L. Nicolaescu. An Invitation to Morse Theory , 2007 .
[15] LUSTERNIK–SCHNIRELMANN CATEGORY BASED ON THE DISCRETE CONLEY INDEX THEORY , 2018, Glasgow Mathematical Journal.
[16] L. Schnirelmann,et al. Méthodes topologiques dans les problèmes variationnels. Première partie : Espaces à un nombre fini de dimensions , 1935 .
[17] Pablo Angulo Ardoy. Cut and conjugate points of the exponential map, with applications , 2014, 1411.3933.
[18] E. Macías-Virgós,et al. An upper bound for the Lusternik–Schnirelmann category of the symplectic group , 2012, Mathematical Proceedings of the Cambridge Philosophical Society.
[19] Jin-ichi Itoh,et al. The Lipschitz continuity of the distance function to the cut locus , 2000 .
[20] Revaz Valerianovich Gamkrelidze,et al. Topology and Geometry , 1970 .
[21] S. Chern,et al. Global differential geometry , 1991 .
[22] Michael A. Buchner,et al. Simplicial structure of the real analytic cut locus , 1977 .
[23] Topological complexity and efficiency of motion planning algorithms , 2016, Revista Matemática Iberoamericana.
[24] M. Mimura,et al. Morse–Bott functions and the Lusternik–Schnirelmann category , 2011 .
[25] David A. Singer,et al. Scattering of geodesic fields, I , 1978 .
[26] O. Cornea. Lusternik-Schnirelmann Category , 2003 .
[27] Michael Farber. Topological Complexity of Motion Planning , 2003, Discret. Comput. Geom..
[28] Richard Crittenden. Minimum and Conjugate Points in Symmetric Spaces , 1962, Canadian Journal of Mathematics.
[29] Petar Pavevsi'c,et al. Complexity of the forward kinematic map , 2017, 1708.00698.