Homotopic Distance and Generalized Motion Planning

We prove that the homotopic distance between two maps defined on a manifold is bounded above by the sum of their subspace distances on the critical submanifol of any Morse-Bott function. This generalizes the Lusternik-Schnirelmann theorem (for Morse functions), and a similar result by Farber for the topological complexity. Analogously, we prove that, for analytic manifolds, the homotopic distance is bounded by the sum of the subspace distances on any submanifold and its cut locus. As an application, we show how navigation functions can be used to solve a generalized motion planning problem.

[1]  Michael Farber,et al.  Topological complexity of configuration spaces , 2008, 0806.4111.

[2]  R. Ho Algebraic Topology , 2022 .

[3]  A. Murillo,et al.  Topological complexity of the work map , 2017, Journal of Topology and Analysis.

[4]  Augustin Banyaga,et al.  A proof of the Morse-Bott Lemma , 2004 .

[5]  Jamie Scott On the Topological Complexity of Maps , 2020, Topology and its Applications.

[6]  Michael Reeken,et al.  Stability of critical points under small perturbations Part I: Topological theory , 1972 .

[7]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[8]  A. Gómez-Tato,et al.  Trace map, Cayley transform and LS category of Lie groups , 2009, 0907.0751.

[9]  E. MACÍAS–VIRGÓS,et al.  Homotopic distance between maps , 2018, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  J. H. C. Whitehead,et al.  Methodes Topologiques dans les problemes variationnels. I. Espaces a un nombre fini de dimensions , 1935 .

[11]  Yuli B. Rudyak,et al.  Lusternik-Schnirelmann theory for fixed points of maps , 2003 .

[12]  E. Macías-Virgós,et al.  Morse Theory and the Lusternik–Schnirelmann Category of Quaternionic Grassmannians , 2016, Proceedings of the Edinburgh Mathematical Society.

[13]  Topological complexity of a map , 2018, Homology, Homotopy and Applications.

[14]  L. Nicolaescu An Invitation to Morse Theory , 2007 .

[15]  LUSTERNIK–SCHNIRELMANN CATEGORY BASED ON THE DISCRETE CONLEY INDEX THEORY , 2018, Glasgow Mathematical Journal.

[16]  L. Schnirelmann,et al.  Méthodes topologiques dans les problèmes variationnels. Première partie : Espaces à un nombre fini de dimensions , 1935 .

[17]  Pablo Angulo Ardoy Cut and conjugate points of the exponential map, with applications , 2014, 1411.3933.

[18]  E. Macías-Virgós,et al.  An upper bound for the Lusternik–Schnirelmann category of the symplectic group , 2012, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Jin-ichi Itoh,et al.  The Lipschitz continuity of the distance function to the cut locus , 2000 .

[20]  Revaz Valerianovich Gamkrelidze,et al.  Topology and Geometry , 1970 .

[21]  S. Chern,et al.  Global differential geometry , 1991 .

[22]  Michael A. Buchner,et al.  Simplicial structure of the real analytic cut locus , 1977 .

[23]  Topological complexity and efficiency of motion planning algorithms , 2016, Revista Matemática Iberoamericana.

[24]  M. Mimura,et al.  Morse–Bott functions and the Lusternik–Schnirelmann category , 2011 .

[25]  David A. Singer,et al.  Scattering of geodesic fields, I , 1978 .

[26]  O. Cornea Lusternik-Schnirelmann Category , 2003 .

[27]  Michael Farber Topological Complexity of Motion Planning , 2003, Discret. Comput. Geom..

[28]  Richard Crittenden Minimum and Conjugate Points in Symmetric Spaces , 1962, Canadian Journal of Mathematics.

[29]  Petar Pavevsi'c,et al.  Complexity of the forward kinematic map , 2017, 1708.00698.