Compensation of loss by optical gain in propagating surface plasmons

In this work, we report the substantial compensation of loss of propagating SPPs at the interface between silver film and optically pumped polymer with dye. The large magnitude of the effect, nearly threefold change of the reflectivity, enables a variety of applications of "active" nanoplasmonics. In order to quantify the observed phenomenon, we have extended the theoretical formalism relating the reflectivity in ATR experiment and the SPP propagation length to the case of active dielectric media.

[1]  Peer Fischer,et al.  Negative refraction at optical frequencies in nonmagnetic two-component molecular media. , 2005, Physical review letters.

[2]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[3]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[4]  Shanhui Fan,et al.  All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure. , 2006, Physical review letters.

[5]  Guided modes in a uniaxial multilayer. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  C. Soukoulis,et al.  Schrödinger equation with imaginary potential , 2001 .

[7]  Carlo Sirtori,et al.  Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons , 1998 .

[8]  A. Lakhtakia,et al.  Comment on "Negative refraction at optical frequencies in nonmagnetic two-component molecular media". , 2006, Physical review letters.

[9]  Yeshaiahu Fainman,et al.  Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. , 2004, Optics express.

[10]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[11]  H. Simon,et al.  Enhanced total reflection with surface plasmons , 1979 .

[12]  Kristjan Leosson,et al.  Localization and waveguiding of surface plasmon polaritons in random nanostructures. , 2002, Physical review letters.

[13]  Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides. , 2006, Physical review letters.

[14]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[15]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[16]  N. M. Lawandy,et al.  Localized surface plasmon singularities in amplifying media , 2004 .

[17]  J. Seidel,et al.  Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. , 2005, Physical review letters.

[18]  Thomas Søndergaard,et al.  Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons. , 2005, Optics express.

[19]  V. Podolskiy,et al.  PLASMON MODES IN METAL NANOWIRES AND LEFT-HANDED MATERIALS , 2002 .

[20]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[21]  V. Shalaev,et al.  Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. , 2006, Optics letters.

[22]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[23]  Johannes Falnes,et al.  Fluorescence lifetime studies of Rhodamine 6G in methanol , 1977 .

[24]  Mihai Ibanescu,et al.  Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. , 2005, Physical review letters.

[25]  Ivan Avrutsky,et al.  Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain , 2004 .

[26]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.