Application of Analytic Hierarchy Process to Stochastic Robustness Synthesis of Integrated Vehicle Controllers

This paper deals with the robust design procedure of integrated vehicle dynamics controller based on Stochastic Robustness Synthesis with use of a rational decision making process of the controller parameters. The basic control structure that integrates four-wheel steering and four-wheel torque control is determined using a nonlinear predictive control theory. The Analytic Hierarchy Process, a basic approach to decision making, is applied to determine the weight coefficients of robustness evaluation function of the controller. The desired vehicle dynamic performance is described as four-layer hierarchy structure and the design priority is determined with respect to several design criteria. The proposed design process produced a control system with excellent stability and performance robustness to vehicle parameter variations.