A survey of parallel distributed genetic algorithms

In this work we review the most important existing developments and future trends in the class of Parallel Genetic Algorithms (PGAs). PGAs are mainly subdivided into coarse and fine grain PGAs, the coarse grain models being the most popular ones. An exceptional characteristic of PGAs is that they are not just the parallel version of a sequential algorithm intended to provide speed gains. Instead, they represent a new kind of meta-heuristics of higher efficiency and efficacy thanks to their structured population and parallel execution. The good robustness of these algorithms on problems of high complexity has led to an increasing number of applications in the fields of artificial intelligence, numeric and combinatorial optimization, business, engineering, etc. We make a formalization of these algorithms, and present a timely and topic survey of their most important traditional and recent technical issues. Besides that, useful summaries on their main applications plus Internet pointers to important web sites are included in order to help new researchers to access this growing area.

[1]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[2]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[3]  Erik D. Goodman,et al.  Coarse-grain parallel genetic algorithms: categorization and new approach , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[4]  Masaharu Munetomo,et al.  An Efficient Migration Scheme for Subpopulation-Based Asynchronously Parallel Genetic Algorithms , 1993, ICGA.

[5]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[6]  Erick Cantú-Paz,et al.  A Summary of Research on Parallel Genetic Algorithms , 1995 .

[7]  Yuval Davidor,et al.  A Naturally Occurring Niche and Species Phenomenon: The Model and First Results , 1991, ICGA.

[8]  Peter J. Fleming,et al.  Parallel Genetic Algorithms: A Survey , 1994 .

[9]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[10]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[11]  Enrique Alba,et al.  Type-constrained genetic programming for rule-base definition in fuzzy logic controllers , 1996 .

[12]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[13]  L. Darrell Whitley,et al.  GENITOR II: a distributed genetic algorithm , 1990, J. Exp. Theor. Artif. Intell..

[14]  Kenneth A. De Jong,et al.  An Analysis of Multi-Point Crossover , 1990, FOGA.

[15]  Surya B. Yadav,et al.  The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[16]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[17]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[18]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[19]  Francisco Herrera,et al.  Gradual distributed real-coded genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[20]  L. Wang SPLICER - A GENETIC ALGORITHM TOOL FOR SEARCH AND OPTIMIZATION, VERSION 1.0 (MACINTOSH VERSION) , 1994 .

[21]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[22]  Enrique Alba,et al.  Evolutionary design of fuzzy logic controllers , 1996, Proceedings of the 1996 IEEE International Symposium on Intelligent Control.

[23]  Jim Antonisse,et al.  A New Interpretation of Schema Notation that Overtums the Binary Encoding Constraint , 1989, ICGA.

[24]  Enrique Alba,et al.  Full Automatic ANN Design: A Genetic Approach , 1993, IWANN.

[25]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[26]  Cesare Alippi,et al.  Genetic-algorithm programming environments , 1994, Computer.

[27]  Enrique Alba,et al.  Genetic Algorithms for Protocol Validation , 1996, PPSN.

[28]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[29]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[30]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[31]  David Mark Levine,et al.  A parallel genetic algorithm for the set partitioning problem , 1995 .

[32]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[33]  Kalyanmoy Deb,et al.  Don't Worry, Be Messy , 1991, ICGA.

[34]  Piero P. Bonissone,et al.  Soft computing: the convergence of emerging reasoning technologies , 1997, Soft Comput..

[35]  Heinz Mühlenbein,et al.  Evolution in Time and Space - The Parallel Genetic Algorithm , 1990, FOGA.

[36]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[37]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[38]  Enrique Alba,et al.  A Genetic Algorithm for Load Balancing in Parallel Query Evaluation for Deductive Relational Data Bases , 1995, ICANNGA.

[39]  Vassilios Petridis,et al.  Co-operating Populations with Different Evolution Behaviours , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[40]  Roger L. Wainwright,et al.  LibGA: a user-friendly workbench for order-based genetic algorithm research , 1993, SAC '93.

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[43]  Markus Schwehm,et al.  A Massively Parallel Genetic Algorithm on the MasPar MP-1 , 1993 .

[44]  Joachim Stender,et al.  Parallel Genetic Algorithms: Theory and Applications , 1993 .

[45]  David L. Levine,et al.  Users guide to the PGAPack parallel genetic algorithm library , 1995 .

[46]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[47]  Paolo Prinetto,et al.  Exploiting Competing Subpopulations for Automatic Generation of Test Sequences for Digital Cicuits , 1996, PPSN.

[48]  Patrick D. Surry,et al.  The Reproductive Plan Language RPL2: Motivation, Architecture and Applications , 1994 .

[49]  Shu-Yuen Hwang,et al.  A Genetic Algorithm with Disruptive Selection , 1993, ICGA.

[50]  Theodore C. Belding,et al.  The Distributed Genetic Algorithm Revisited , 1995, ICGA.

[51]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[52]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[53]  John J. Grefenstette,et al.  A Parallel Genetic Algorithm , 1987, ICGA.

[54]  Joachim Born,et al.  Hierarchically Structured Distributed Genetic Algorithms , 1992, PPSN.