Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model?theoretic Aspects
暂无分享,去创建一个
Valentin Goranko | Willem Conradie | Dimiter Vakarelov | V. Goranko | Willem Conradie | D. Vakarelov
[1] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[2] A. Tarski,et al. Boolean Algebras with Operators. Part I , 1951 .
[3] Alasdair Urquhart,et al. Temporal Logic , 1971 .
[4] Robert Goldblatt,et al. First-order definability in modal logic , 1975, Journal of Symbolic Logic.
[5] J.F.A.K. van Benthem,et al. Modal Correspondence Theory , 1977 .
[6] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[7] Kit Fine,et al. Logics containing K4. Part I , 1974, Journal of Symbolic Logic.
[8] Giovanni Sambin,et al. Topology and duality in modal logic , 1988, Ann. Pure Appl. Log..
[9] Giovanni Sambin,et al. A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.
[10] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[11] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[12] Marcus Kracht,et al. How Completeness and Correspondence Theory Got Married , 1993 .
[13] Yde Venema,et al. Derivation rules as anti-axioms in modal logic , 1993, Journal of Symbolic Logic.
[14] M. de Rijke. Extending modal logic , 1993 .
[15] Andrzej Szalas. On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..
[16] Valentin Goranko,et al. Modal logic with names , 1993, J. Philos. Log..
[17] Harold Simmons,et al. The Monotonous Elimination of Predicate Variables , 1994, J. Log. Comput..
[18] D. Gabbay,et al. Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .
[19] Bjarni Jónsson,et al. On the canonicity of Sahlqvist identities , 1994, Stud Logica.
[20] M. de Rijke,et al. Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.
[21] Frank Wolter,et al. Advanced modal logic , 1996 .
[22] Michael Zakharyaschev,et al. Canonical formulas for K4. Part II: Cofinal subframe logics , 1996, Journal of Symbolic Logic.
[23] J. Gustafsson. An Implementation and Optimization of an Algorithm for Reducing Formulae in Second-Order Logic , 1996 .
[24] Frank Wolter,et al. The Structure of Lattices of Subframe Logics , 1997, Ann. Pure Appl. Log..
[25] Silvio Ghilardi,et al. Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..
[26] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[27] Valentin Goranko,et al. Axiomatizations with Context Rules of Inference in Modal Logic , 1998, Stud Logica.
[28] Yde Venema,et al. Canonical Pseudo-Correspondence , 1998, Advances in Modal Logic.
[29] A. Szałas,et al. A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .
[30] M. Kracht. Tools and Techniques in Modal Logic , 1999 .
[31] Valentin Goranko,et al. Sahlqvist Formulas Unleashed in Polyadic Modal Languages , 2000, Advances in Modal Logic.
[32] Valentin Goranko,et al. Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..
[33] Dimiter Vakarelov. Modal Definability in Languages with a Finite Number of Propositional Variables and a New Extension of the Sahlqvist's Class , 2002, Advances in Modal Logic.
[34] Georg Struth,et al. Relational and Kleene-Algebraic Methods in Computer Science , 2003, Lecture Notes in Computer Science.
[35] Valentin Goranko,et al. SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.
[36] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[37] Robert Goldblatt,et al. Erdös graphs resolve Fine's canonicity problem , 2004, Bull. Symb. Log..
[38] Johan van Benthem,et al. Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.
[39] Valentin Goranko,et al. Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..
[40] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..