Elementary Canonical Formulae: A Survey on Syntactic, Algorithmic, and Model?theoretic Aspects

In terms of validity in Kripke frames, a modal formula expresses a universal monadic second-order condition. Those modal formulae which are equivalent to first-order conditions are called ele- mentary. Modal formulae which have a certain persistence property which implies their validity in all canonical frames of modal logics axiomatized with them, and therefore their completeness, are called canonical. This is a survey of a recent and ongoing study of the class of elementary and canonical modal formulae. We summarize main ideas and results, and outline further research perspectives.

[1]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[2]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[3]  Alasdair Urquhart,et al.  Temporal Logic , 1971 .

[4]  Robert Goldblatt,et al.  First-order definability in modal logic , 1975, Journal of Symbolic Logic.

[5]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[6]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[7]  Kit Fine,et al.  Logics containing K4. Part I , 1974, Journal of Symbolic Logic.

[8]  Giovanni Sambin,et al.  Topology and duality in modal logic , 1988, Ann. Pure Appl. Log..

[9]  Giovanni Sambin,et al.  A new proof of Sahlqvist's theorem on modal definability and completeness , 1989, Journal of Symbolic Logic.

[10]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[11]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[12]  Marcus Kracht,et al.  How Completeness and Correspondence Theory Got Married , 1993 .

[13]  Yde Venema,et al.  Derivation rules as anti-axioms in modal logic , 1993, Journal of Symbolic Logic.

[14]  M. de Rijke Extending modal logic , 1993 .

[15]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..

[16]  Valentin Goranko,et al.  Modal logic with names , 1993, J. Philos. Log..

[17]  Harold Simmons,et al.  The Monotonous Elimination of Predicate Variables , 1994, J. Log. Comput..

[18]  D. Gabbay,et al.  Temporal Logic Mathematical Foundations and Computational Aspects , 1994 .

[19]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[20]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[21]  Frank Wolter,et al.  Advanced modal logic , 1996 .

[22]  Michael Zakharyaschev,et al.  Canonical formulas for K4. Part II: Cofinal subframe logics , 1996, Journal of Symbolic Logic.

[23]  J. Gustafsson An Implementation and Optimization of an Algorithm for Reducing Formulae in Second-Order Logic , 1996 .

[24]  Frank Wolter,et al.  The Structure of Lattices of Subframe Logics , 1997, Ann. Pure Appl. Log..

[25]  Silvio Ghilardi,et al.  Constructive Canonicity in Non-Classical Logics , 1997, Ann. Pure Appl. Log..

[26]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[27]  Valentin Goranko,et al.  Axiomatizations with Context Rules of Inference in Modal Logic , 1998, Stud Logica.

[28]  Yde Venema,et al.  Canonical Pseudo-Correspondence , 1998, Advances in Modal Logic.

[29]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[30]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[31]  Valentin Goranko,et al.  Sahlqvist Formulas Unleashed in Polyadic Modal Languages , 2000, Advances in Modal Logic.

[32]  Valentin Goranko,et al.  Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..

[33]  Dimiter Vakarelov Modal Definability in Languages with a Finite Number of Propositional Variables and a New Extension of the Sahlqvist's Class , 2002, Advances in Modal Logic.

[34]  Georg Struth,et al.  Relational and Kleene-Algebraic Methods in Computer Science , 2003, Lecture Notes in Computer Science.

[35]  Valentin Goranko,et al.  SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.

[36]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[37]  Robert Goldblatt,et al.  Erdös graphs resolve Fine's canonicity problem , 2004, Bull. Symb. Log..

[38]  Johan van Benthem,et al.  Minimal predicates, fixed-points, and definability , 2005, Journal of Symbolic Logic.

[39]  Valentin Goranko,et al.  Elementary canonical formulae: extending Sahlqvist's theorem , 2006, Ann. Pure Appl. Log..

[40]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..