Unbounded-error quantum computation with small space bounds

We prove the following facts about the language recognition power of quantum Turing machines (QTMs) in the unbounded error setting: QTMs are strictly more powerful than probabilistic Turing machines for any common space bound s satisfying s(n)=o(loglogn). For ''one-way'' Turing machines, where the input tape head is not allowed to move left, the above result holds for s(n)=o(logn). We also give a characterization for the class of languages recognized with unbounded error by real-time quantum finite automata (QFAs) with restricted measurements. It turns out that these automata are equal in power to their probabilistic counterparts, and this fact does not change when the QFA model is augmented to allow general measurements and mixed states. Unlike the case with classical finite automata, when the QFA tape head is allowed to remain stationary in some steps, more languages become recognizable. We define and use a QTM model that generalizes the other variants introduced earlier in the study of quantum space complexity.

[1]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[2]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[3]  A. C. Cem Say,et al.  Probabilistic and quantum finite automata with postselection , 2011, ArXiv.

[4]  Eric Bach,et al.  Space-bounded quantum computation , 1998 .

[5]  John Watrous,et al.  Space-Bounded Quantum Complexity , 1999, J. Comput. Syst. Sci..

[6]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[7]  John Watrous,et al.  On the complexity of simulating space-bounded quantum computations , 2004, computational complexity.

[8]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[9]  Abuzer Yakarylmaz,et al.  Classical and quantum computation with small space bounds (PhD thesis) , 2011, ArXiv.

[10]  Paavo Turakainen,et al.  Generalized automata and stochastic languages , 1969 .

[11]  A. C. Cem Say,et al.  Efficient probability amplification in two-way quantum finite automata , 2009, Theor. Comput. Sci..

[12]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[13]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[14]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[15]  A. C. Cem Say,et al.  Languages recognized by nondeterministic quantum finite automata , 2009, Quantum Inf. Comput..

[16]  Vincent D. Blondel,et al.  Decidable and Undecidable Problems about Quantum Automata , 2005, SIAM J. Comput..

[17]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[18]  Marek Karpinski,et al.  Lower Space Bounds for Randomized Computation , 1994, ICALP.

[19]  Alberto Bertoni,et al.  Analogies and di"erences between quantum and stochastic automata , 2001 .

[20]  François Le Gall Exponential Separation of Quantum and Classical Online Space Complexity , 2009 .

[21]  François Le Gall Exponential separation of quantum and classical online space complexity , 2006, SPAA.

[22]  Rusins Freivalds,et al.  Probabilistic Two-Way Machines , 1981, MFCS.

[23]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[24]  John C. Shepherdson,et al.  The Reduction of Two-Way Automata to One-Way Automata , 1959, IBM J. Res. Dev..

[25]  Mariëlle Stoelinga,et al.  An Introduction to Probabilistic Automata , 2002, Bull. EATCS.

[26]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[27]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[28]  Mika Hirvensalo,et al.  Various Aspects of Finite Quantum Automata , 2008, Developments in Language Theory.

[29]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[30]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[31]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[32]  YA. YA. KANEPS,et al.  Stochasticity of the languages acceptable by two-way finite probabilistic automata , 1991 .

[33]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[34]  A. C. Cem Say,et al.  Language Recognition by Generalized Quantum Finite Automata with Unbounded Error , 2009, ArXiv.

[35]  Andrzej Szepietowski Turing Machines with Sublogarithmic Space , 1994, Lecture Notes in Computer Science.

[36]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[37]  Alberto Bertoni,et al.  Quantum Computing: 1-Way Quantum Automata , 2003, Developments in Language Theory.

[38]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[39]  Dieter van Melkebeek,et al.  A Quantum Time-Space Lower Bound for the Counting Hierarchy , 2008, Electron. Colloquium Comput. Complex..

[40]  Namio Honda,et al.  A Context-Free Language Which is not Acceptable by a Probabilistic Automaton , 1971, Inf. Control..

[41]  Daowen Qiu,et al.  Determining the equivalence for one-way quantum finite automata , 2007, Theor. Comput. Sci..

[42]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[43]  Azaria Paz,et al.  Introduction to probabilistic automata (Computer science and applied mathematics) , 1971 .

[44]  Abuzer Yakaryilmaz Classical and quantum computation with small space bounds (PhD thesis) , 2011, ArXiv.

[45]  Kathrin Paschen Quantum finite automata using ancilla qubits , 2000 .