CATEGORICAL SINGULARITIES DEGENERATIONS

. We introduce the notion of categorical absorption of singularities: an operation that removes from the derived category of a singular variety a small admissible subcategory responsible for singularity and leaves a smooth and proper category. We construct (under appropriate assumptions) a categorical absorption for a projective variety X with isolated ordinary double points. We further show that for any smoothing X /B of X over a smooth curve B , the smooth part of the derived category of X extends to a smooth and proper over B family of triangulated subcategories in the fibers of X .

[1]  Alexander Perry,et al.  Categorical cones and quadratic homological projective duality , 2019, Annales scientifiques de l'École Normale Supérieure.

[2]  E. Shinder,et al.  Homologically finite-dimensional objects in triangulated categories , 2022, 2211.09418.

[3]  Sheng-chi Liu,et al.  Kernels of categorical resolutions of nodal singularities , 2022, Rendiconti del Circolo Matematico di Palermo Series 2.

[4]  A. Kuznetsov,et al.  On higher-dimensional del Pezzo varieties , 2022, 2206.01549.

[5]  Dylan Spence,et al.  A note on semiorthogonal indecomposability of some Cohen-Macaulay varieties , 2021, Journal of Pure and Applied Algebra.

[6]  Alexander Kuznetsov,et al.  Simultaneous categorical resolutions , 2021, Mathematische Zeitschrift.

[7]  Alexander Kuznetsov,et al.  Semiorthogonal decompositions in families , 2021, 2111.00527.

[8]  Nebojsa Pavic,et al.  Derived categories of nodal del Pezzo threefolds , 2021, 2108.04499.

[9]  F. Xie Nodal quintic del Pezzo threefolds and their derived categories , 2021, 2108.03186.

[10]  Alexander Perry,et al.  Homological projective duality for quadrics , 2019, Journal of Algebraic Geometry.

[11]  Nebojsa Pavic,et al.  K-theory and the singularity category of quotient singularities , 2018, Annals of K-Theory.

[12]  E. Shinder,et al.  Derived categories of singular surfaces , 2018, Journal of the European Mathematical Society.

[13]  R. Buchweitz Maximal Cohen–Macaulay Modules and Tate Cohomology , 2021, Mathematical Surveys and Monographs.

[14]  D. Orlov Finite-dimensional differential graded algebras and their geometric realizations , 2019, Advances in Mathematics.

[15]  A. Efimov Homotopy finiteness of some DG categories from algebraic geometry , 2013, Journal of the European Mathematical Society.

[16]  T. Wedhorn,et al.  Representable Functors , 2020, Springer Studium Mathematik - Master.

[17]  E. Shinder,et al.  Obstructions to Semiorthogonal Decompositions for Singular Threefolds I: K-Theory , 2019, 1910.09531.

[18]  A. Kuznetsov Derived Categories of Families of Sextic del Pezzo Surfaces , 2017, International Mathematics Research Notices.

[19]  Alexander Kuznetsov,et al.  Derived categories of curves as components of Fano manifolds , 2016, J. Lond. Math. Soc..

[20]  Martin Kalck,et al.  Derived categories of graded gentle one-cycle algebras , 2016, Journal of Pure and Applied Algebra.

[21]  C. Shramov,et al.  Hilbert schemes of lines and conics and automorphism groups of Fano threefolds , 2016, 1605.02010.

[22]  A. Kuznetsov,et al.  Categorical resolutions of irrational singularities , 2012, 1212.6170.

[23]  A. Kuznetsov Base change for semiorthogonal decompositions , 2007, Compositio Mathematica.

[24]  V. Lunts Categorical resolution of singularities , 2009, 0905.4566.

[25]  D. Orlov,et al.  Formal completions and idempotent completions of triangulated categories of singularities , 2009, 0901.1859.

[26]  B. Keller,et al.  The Hall algebra of a spherical object , 2008, 0810.5546.

[27]  L. Migliorini,et al.  The decomposition theorem, perverse sheaves and the topology of algebraic maps , 2007, 0712.0349.

[28]  A. Kuznetsov Lefschetz decompositions and categorical resolutions of singularities , 2006, math/0609240.

[29]  T. Bridgeland Derived categories of coherent sheaves , 2006, math/0602129.

[30]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[31]  Dmitri Orlov,et al.  Triangulated categories of singularities and equivalences between Landau-Ginzburg models , 2005, math/0503630.

[32]  A. Kuznetsov Homological projective duality , 2005, math/0507292.

[33]  A. Kuznetsov Hyperplane sections and derived categories , 2005, math/0503700.

[34]  B. Keller On triangulated orbit categories , 2005, Documenta Mathematica.

[35]  Max Lieblich Moduli of complexes on a proper morphism , 2005, math/0502198.

[36]  Richard P. Thomas,et al.  ℙ-objects and autoequivalences of derived categories , 2005, math/0507040.

[37]  D. Orlov,et al.  Triangulated categories of singularities and D-branes in Landau-Ginzburg models , 2003, math/0302304.

[38]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[39]  M. Hoshino,et al.  On t-structures and torsion theories induced by compact objects , 2000, math/0005172.

[40]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[41]  R. Thomason The classification of triangulated subcategories , 1997, Compositio Mathematica.

[42]  Bernhard Keller,et al.  Deriving DG categories , 1994 .

[43]  A. Neeman,et al.  Homotopy limits in triangulated categories , 1993 .

[44]  M. Kapranov On the derived categories of coherent sheaves on some homogeneous spaces , 1988 .

[45]  G. Ottaviani Spinor bundles on quadrics , 1988 .

[46]  S. Ishii Some projective contraction theorems , 1977 .

[47]  L. Illusie Séminaire de Géométrie Algébrique du Bois-Marie 1965–66 SGA 5 , 1977 .

[48]  T. Willmore Algebraic Geometry , 1973, Nature.