Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory

We describe categorical models of a circuit-based (quantum) functional programming language. We show that enriched categories play a crucial role. Following earlier work on QWire by Paykin et al., we consider both a simple first-order linear language for circuits, and a more powerful host language, such that the circuit language is embedded inside the host language. Our categorical semantics for the host language is standard, and involves cartesian closed categories and monads. We interpret the circuit language not in an ordinary category, but in a category that is enriched in the host category. We show that this structure is also related to linear/non-linear models. As an extended example, we recall an earlier result that the category of W*-algebras is dcpo-enriched, and we use this model to extend the circuit language with some recursive types.

[1]  Gordon D. Plotkin,et al.  An axiomatisation of computationally adequate domain theoretic models of FPC , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[2]  Neil J. Ross,et al.  ALGEBRAIC AND LOGICAL METHODS IN QUANTUM COMPUTATION , 2015, 1510.02198.

[3]  Rasmus Ejlers Møgelberg,et al.  Linear usage of state , 2014, Log. Methods Comput. Sci..

[4]  Sam Staton,et al.  Classical Control and Quantum Circuits in Enriched Category Theory , 2018, MFPS.

[5]  Kenta Cho,et al.  Semantics for a Quantum Programming Language by Operator Algebras , 2014, New Generation Computing.

[6]  M. Mislove,et al.  A DCPO-enriched linear / non-linear model , 2017 .

[7]  Michael Barr,et al.  Algebraically compact functors , 1992 .

[8]  Aleks Kissinger,et al.  A categorical semantics for causal structure , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[9]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[10]  Peter W. O'Hearn On bunched typing , 2003, J. Funct. Program..

[11]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[12]  Krysta Marie Svore,et al.  LIQUi|>: A Software Design Architecture and Domain-Specific Language for Quantum Computing , 2014, ArXiv.

[13]  Paul Blain Levy,et al.  Call-By-Push-Value: A Functional/Imperative Synthesis , 2003, Semantics Structures in Computation.

[14]  Jennifer Paykin,et al.  QWIRE: a core language for quantum circuits , 2017, POPL.

[15]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[16]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[17]  Clemens Berger,et al.  Monads with arities and their associated theories , 2011, 1101.3064.

[18]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[19]  Jennifer Paykin,et al.  QWIRE Practice: Formal Verification of Quantum Circuits in Coq , 2018, QPL.

[20]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[21]  Andre Kornell Quantum Collections , 2012 .

[22]  Thorsten Altenkirch,et al.  Monads need not be endofunctors , 2010, Log. Methods Comput. Sci..

[23]  Rasmus Ejlers Møgelberg,et al.  The enriched effect calculus: syntax and semantics , 2014, J. Log. Comput..

[24]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[25]  John Power Enriched Lawvere Theories , .

[26]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[27]  Peter Selinger,et al.  A categorical model for a quantum circuit description language , 2017, QPL.

[28]  Brian Day,et al.  A reflection theorem for closed categories , 1972 .

[29]  Michele Pagani,et al.  Applying quantitative semantics to higher-order quantum computing , 2013, POPL.

[30]  Ichiro Hasuo,et al.  Semantics of Higher-Order Quantum Computation via Geometry of Interaction , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[31]  B. Day On closed categories of functors , 1970 .

[32]  Mathys Rennela,et al.  Towards a Quantum Domain Theory: Order-enrichment and Fixpoints in W*-algebras , 2014, MFPS.

[33]  Bart Jacobs,et al.  A Recipe for State-and-Effect Triangles , 2017, Log. Methods Comput. Sci..

[34]  Sam Staton,et al.  Algebraic Effects, Linearity, and Quantum Programming Languages , 2015, POPL.

[35]  Sam Staton,et al.  Complete Positivity and Natural Representation of Quantum Computations , 2015, MFPS.

[36]  Ugo Dal Lago,et al.  The geometry of parallelism: classical, probabilistic, and quantum effects , 2016, POPL.

[37]  Simon Perdrix,et al.  Quantum Programming with Inductive Datatypes: Causality and Affine Type Theory , 2019, FoSSaCS.

[38]  Robert W. J. Furber,et al.  From Kleisli Categories to Commutative C*-algebras: Probabilistic Gelfand Duality , 2013, Log. Methods Comput. Sci..

[39]  Mathys Rennela,et al.  Operator Algebras in Quantum Computation , 2015, ArXiv.

[40]  Dan R. Ghica,et al.  Categorical semantics of digital circuits , 2016, 2016 Formal Methods in Computer-Aided Design (FMCAD).

[41]  G. M. Kelly,et al.  A note on actions of a monoidal category. , 2001 .

[42]  Sam Staton,et al.  Freyd categories are Enriched Lawvere Theories , 2014, WACT.

[43]  Bart Jacobs,et al.  On Block Structures in Quantum Computation , 2013, MFPS.

[44]  境 正一郎 C[*]-algebras and W[*]-algebras , 1973 .

[45]  Peter Selinger,et al.  Presheaf Models of Quantum Computation: An Outline , 2013, Computation, Logic, Games, and Quantum Foundations.

[46]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.