On the Restricted Size Ramsey Number Involving a Path P3

Abstract For any pair of graphs G and H, both the size Ramsey number ̂r(G,H) and the restricted size Ramsey number r*(G,H) are bounded above by the size of the complete graph with order equals to the Ramsey number r(G,H), and bounded below by e(G) + e(H) − 1. Moreover, trivially, ̂r(G,H) ≤ r*(G,H). When introducing the size Ramsey number for graph, Erdős et al. (1978) asked two questions; (1) Do there exist graphs G and H such that ˆr(G,H) attains the upper bound? and (2) Do there exist graphs G and H such that ̂r(G,H) is significantly less than the upper bound? In this paper we consider the restricted size Ramsey number r*(G,H). We answer both questions above for r*(G,H) when G = P3 and H is a connected graph.

[1]  Ralph J. Faudree,et al.  Size Ramsey numbers involving stars , 1983, Discret. Math..

[2]  Andrzej Dudek,et al.  Size-Ramsey numbers of cycles versus a path , 2016, Discret. Math..

[3]  Halina Bielak Size Ramsey numbers for some regular graphs , 2009, Discret. Math..

[4]  S. Radziszowski Small Ramsey Numbers , 2011 .

[5]  Ralph J. Faudree,et al.  Size Ramsey numbers for small-order graphs , 1983, J. Graph Theory.

[6]  H. Bielak Remarks on the size Ramsey number of graphs , 1987 .

[7]  Edy Tri Baskoro,et al.  On The Restricted Size Ramsey Number , 2015, ICGTIS.

[8]  Shoham Letzter Path Ramsey Number for Random Graphs , 2016, Comb. Probab. Comput..

[9]  Restricted size Ramsey number for P3 versus small paths , 2016 .

[10]  Ingrid Mengersen,et al.  Size Ramsey results for paths versus stars , 1998, Australas. J Comb..

[11]  P. Erdos,et al.  The size Ramsey number , 1978 .

[12]  Edy Tri Baskoro,et al.  Restricted size Ramsey number for path of order three versus graph of order five , 2017, Electron. J. Graph Theory Appl..

[13]  F. Harary,et al.  Generalized ramsey theory VIII. The size ramsey number of small graphs , 1983 .

[14]  S. Burr A SURVEY OF NONCOMPLETE RAMSEY THEORY FOR GRAPHS , 1979 .

[15]  Andrzej Dudek,et al.  An Alternative Proof of the Linearity of the Size-Ramsey Number of Paths , 2015, Comb. Probab. Comput..

[16]  Frank Harary,et al.  Generalized Ramsey theory for graphs , 1972 .

[17]  Reinhard Diestel,et al.  Graph Theory , 1997 .