Spatial and temporal variations reveal the response of zooplankton to cyanobacteria.

[1]  H. Paerl,et al.  Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China , 2017, Hydrobiologia.

[2]  Alan E. Wilson,et al.  The interaction between cyanobacteria and zooplankton in a more eutrophic world. , 2016, Harmful algae.

[3]  Jeff C Ho,et al.  Global solutions to regional problems: Collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. , 2016, Harmful algae.

[4]  C. Gobler,et al.  Preface for Special Issue on "Global expansion of harmful cyanobacterial blooms: Diversity, ecology, causes, and controls". , 2016, Harmful algae.

[5]  W. Carmichael,et al.  Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. , 2016, Harmful algae.

[6]  H. Paerl,et al.  A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. , 2016, Harmful algae.

[7]  F. Pomati,et al.  Cyanobacteria Affect Fitness and Genetic Structure of Experimental Daphnia Populations. , 2016, Environmental science & technology.

[8]  E. Dembowska,et al.  Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland , 2015 .

[9]  Miquel Lürling,et al.  Understanding cyanobacteria‐zooplankton interactions in a more eutrophic world , 2014 .

[10]  K. A. Ger,et al.  The effects of a microcystin-producing and lacking strain of Microcystis on the survival of a widespread tropical copepod (Notodiaptomus iheringi) , 2014, Hydrobiologia.

[11]  J. Pijanowska,et al.  Effect of poor manageability and low nutritional value of cyanobacteria on Daphnia magna life history performance , 2014 .

[12]  Adam J. Heathcote,et al.  Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities. , 2014, Ecology letters.

[13]  M. Schagerl,et al.  Species-specific separation of lake plankton reveals divergent food assimilation patterns in rotifers , 2014, Freshwater biology.

[14]  Z. Mohamed,et al.  Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans. , 2013, Ecotoxicology and environmental safety.

[15]  M. Sánchez-Contreras,et al.  Effects of harmful cyanobacteria on the freshwater pathogenic free-living amoeba Acanthamoeba castellanii. , 2013, Aquatic toxicology.

[16]  G. Rollwagen‐Bollens,et al.  Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake , 2013, Hydrobiologia.

[17]  Jie Zhang,et al.  Fitness benefits and costs of induced defenses in Daphnia carinata (Cladocera: Daphnidae) exposed to cyanobacteria , 2013, Hydrobiologia.

[18]  R. Zurawell,et al.  Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context , 2012 .

[19]  B. Qin,et al.  Large-scale field evidence on the enhancement of small-sized cladocerans by microcystis blooms in Lake Taihu, China , 2012 .

[20]  H. Paerl,et al.  Climate change: links to global expansion of harmful cyanobacteria. , 2012, Water research.

[21]  H. Paerl,et al.  Spatiotemporal patterns and ecophysiology of toxigenic microcystis blooms in Lake Taihu, China: implications for water quality management. , 2012, Environmental science & technology.

[22]  M. Lürling,et al.  Consequences of acclimation to Microcystis on the selective feeding behavior of the calanoid copepod Eudiaptomus gracilis , 2011 .

[23]  P. Xie,et al.  Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China. , 2011, Water research.

[24]  Yuwei Chen,et al.  The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: An 11-year investigation , 2011 .

[25]  S. Teh,et al.  Species specific differences in the ingestion of Microcystis cells by the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi , 2010 .

[26]  M. Lürling,et al.  Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae , 2010 .

[27]  S. Teh,et al.  The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco Estuary , 2010 .

[28]  H. Paerl,et al.  Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China , 2010 .

[29]  S. Nandini,et al.  Effect of mixed toxic diets (Microcystis and Chlorella) on the rotifers Brachionus calyciflorus and Brachionus havanaensis cultured alone and together , 2009 .

[30]  Ronghua Ma,et al.  Two-decade reconstruction of algal blooms in China's Lake Taihu. , 2009, Environmental science & technology.

[31]  H. Paerl,et al.  Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. , 2009, Environmental microbiology reports.

[32]  S. Azevedo,et al.  Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays. , 2009, Ecotoxicology and environmental safety.

[33]  P. Xie,et al.  Experimental studies on the effects of toxic Microcystis aeruginosa PCC7820 on the survival and reproduction of two freshwater rotifers Brachionuscalyciflorus and Brachionus rubens , 2008, Ecotoxicology.

[34]  Alan E. Wilson,et al.  Meta-analysis of cyanobacterial effects on zooplankton population growth rate : species-specific responses , 2008 .

[35]  P. Xie,et al.  Field and experimental studies on the combined impacts of cyanobacterial blooms and small algae on crustacean zooplankton in a large, eutrophic, subtropical, Chinese lake , 2008, Limnology.

[36]  L. Hansson,et al.  Cyanobacterial chemical warfare affects zooplankton community composition , 2007 .

[37]  Qinglong Wu,et al.  Environmental issues of Lake Taihu, China , 2007, Hydrobiologia.

[38]  P. Xie,et al.  Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications. , 2006, Environmental pollution.

[39]  T. Nõges,et al.  Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres , 2005 .

[40]  M. Mhamdi,et al.  Composition biochimique du zooplancton crustacé et broutage du phytoplancton et des protistes ciliés dans un réservoir récemment mis en eau (Sahela, Maroc) , 2003 .

[41]  D. Martin‐Creuzburg,et al.  Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata) , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  Boqiang Qin,et al.  Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China , 2003 .

[43]  J. Meriluoto,et al.  Effects of dissolved cyanobacterial toxins on the survival and egg hatching of estuarine calanoid copepods , 2002 .

[44]  J M Fischer,et al.  NATURAL SELECTION FOR GRAZER RESISTANCE TO TOXIC CYANOBACTERIA: EVOLUTION OF PHENOTYPIC PLASTICITY? , 2001, Evolution; international journal of organic evolution.

[45]  E. Donk,et al.  Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large‐bodied species by interfering filaments of cyanobacteria , 2001 .

[46]  M. Troussellier,et al.  Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (northeast Brazil) , 2001 .

[47]  L. Meester,et al.  Evidence for local adaptation in neighbouring Daphnia populations: a laboratory transplant experiment , 2001 .

[48]  Erik Jeppesen,et al.  Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient , 2000 .

[49]  S. Azevedo,et al.  Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans , 2000 .

[50]  Ram Kumar,et al.  Demographic responses of adult Mesocyclops thermocyclopoides (Copepoda, Cyclopoida) to different plant and animal diets , 1999 .

[51]  D. Post,et al.  Lake ecosystems: Rapid evolution revealed by dormant eggs , 1999, Nature.

[52]  G. Codd,et al.  Comparative toxicity of four microcystins of different hydrophobicities to the protozoan, Tetrahymena pyriformis , 1999, Journal of applied microbiology.

[53]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[54]  Michael T. Brett,et al.  The role of highly unsaturated fatty acids in aquatic foodweb processes , 1997 .

[55]  Jiang‐Shiou Hwang,et al.  Biodiversity of Planktonic Copepods in the Lanyang River (Northeastern Taiwan), a Typical Watershed of Oceania , 2012 .

[56]  Xiangying Zeng,et al.  Tissue concentrations, bioaccumulation, and biomagnification of synthetic musks in freshwater fish from Taihu Lake, China , 2012, Environmental Science and Pollution Research.

[57]  M. Pagano,et al.  Can tropical freshwater zooplankton graze efficiently on cyanobacteria? , 2011, Hydrobiologia.

[58]  H. Paerl,et al.  The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China , 2011 .

[59]  � 2005, by the American Society of Limnology and Oceanography, Inc. Local adaptation of Daphnia pulicaria to toxic cyanobacteria , 2022 .

[60]  Jamie Bartram,et al.  Toxic Cyanobacteria in Water: a Guide to Their Public Health Consequences, Monitoring and Management Chapter 2. Cyanobacteria in the Environment 2.1 Nature and Diversity 2.1.1 Systematics , 2022 .