Fourier’s heat conduction equation: History, influence, and connections

The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier’s development of the heat equation and how, subsequently, Fourier’s work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier’s equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved.

[1]  W. C. Roberts-Austen Bakerian Lecture: On the Diffusion of Metals , 1896 .

[2]  L. W. Barr The Origin of Quantitative Diffusion Measurements in Solids: A Centenary View , 1997 .

[3]  G. Kirchhoff Ueber eine Ableitung der Ohm'schen Gesetze, welche sich an die Theorie der Elektrostatik anschliesst , 1849 .

[4]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[5]  KARL PEARSON,et al.  The Problem of the Random Walk , 1905, Nature.

[6]  D. Lemons,et al.  Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .

[7]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[8]  Lord Rayleigh F.R.S. XII. On the resultant of a large number of vibrations of the same pitch and of arbitrary phase , 1880 .

[9]  D. McKenzie Some remarks on heat flow and gravity anomalies , 1967 .

[10]  Anthony Hallam,et al.  Great Geological Controversies , 1983 .

[11]  P. Forchheimer Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen , 1886 .

[12]  Jean-Antoine Nollet Investigations on the causes for the ebullition of liquids , 1995 .

[13]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[14]  L. Rayleigh,et al.  The theory of sound , 1894 .

[15]  A. E. Maxwell,et al.  Heat Flow through the Deep Sea Floor , 1956 .

[16]  L. P. Williams,et al.  Joseph Fourier: The Man and the Physicist , 1975 .

[17]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[18]  W. Pfeffer,et al.  Osmotische Untersuchungen : studien zur zellmechanik , 1921 .

[19]  F. Y. Edgeworth,et al.  The Law of Error , 1887, Nature.

[20]  LavoisierMM.,et al.  Mémoire sur la chaleur , 1921 .

[21]  Ivor Grattan-Guinness,et al.  Joseph Fourier, 1768-1830 , 1973 .

[22]  A. Fick V. On liquid diffusion , 1855 .

[23]  G. Hagen,et al.  Ueber die Bewegung des Wassers in engen cylindrischen Röhren , 1839 .

[24]  J. H. van't Hoff,et al.  Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen , 1887 .

[25]  Walther Nernst Zur Kinetik der in Lösung befindlichen Körper , 1888 .

[26]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[27]  W. Thomson LXXX. On the uniform motion of heat in homogeneous solid bodies, and its connexion with the mathematical theory of electricity , 1854 .

[28]  G. Taylor Dispersion of soluble matter in solvent flowing slowly through a tube , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  G. S. Ohm,et al.  Die galvanische Kette, mathematisch bearbeitet , 1965 .

[30]  L. A. Richards Capillary conduction of liquids through porous mediums , 1931 .