BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets

Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales. Vos de Wael et al. developed an open source tool called BrainSpace to quantify cortical gradients using 3 structural or functional imaging data. Their toolbox enables gradient identification, comparison, 4 visualization, and association with other brain features.

[1]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[2]  C. Hilgetag,et al.  A blueprint of mammalian cortical connectomes , 2019, PLoS biology.

[3]  Robert Oostenveld,et al.  ConnectomeDB—Sharing human brain connectivity data , 2016, NeuroImage.

[4]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[5]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[6]  F. Sanides COMPARATIVE ARCHITECTONICS OF THE NEOCORTEX OF MAMMALS AND THEIR EVOLUTIONARY INTERPRETATION * , 1969 .

[7]  Claude J. Bajada,et al.  A graded tractographic parcellation of the temporal lobe , 2017, NeuroImage.

[8]  G. Deco,et al.  Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain , 2019, Science Advances.

[9]  Stéphane Dray,et al.  A New Perspective about Moran's Coefficient: Spatial Autocorrelation as a Linear Regression Problem. Moran系数的新视角:空间自相关视为线性回归问题 , 2011 .

[10]  Hao-Ting Wang,et al.  Modes of operation: A topographic neural gradient supporting stimulus dependent and independent cognition , 2019, NeuroImage.

[11]  D. Margulies,et al.  Default mode network can support the level of detail in experience during active task states , 2018, Proceedings of the National Academy of Sciences.

[12]  Ben D. Fulcher,et al.  Multimodal gradients across mouse cortex , 2018, Proceedings of the National Academy of Sciences.

[13]  R A Dart,et al.  The Dual Structure of the Neopallium: its History and Significance. , 1934, Journal of anatomy.

[14]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[15]  Satrajit S. Ghosh,et al.  Diffeomorphic functional brain surface alignment: Functional demons , 2017, NeuroImage.

[16]  Satrajit S. Ghosh,et al.  Functional gradients of the cerebellum , 2018, bioRxiv.

[17]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[18]  Boris C. Bernhardt,et al.  Functional Connectome Contractions in Temporal Lobe Epilepsy , 2019, bioRxiv.

[19]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[20]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[21]  Konrad Wagstyl,et al.  Cortical thickness gradients in structural hierarchies , 2015, NeuroImage.

[22]  Alan C. Evans,et al.  Microstructural and functional gradients are increasingly dissociated in transmodal cortices , 2019, PLoS biology.

[23]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[24]  Leo Grady,et al.  FOCUSR: Feature Oriented Correspondence Using Spectral Regularization--A Method for Precise Surface Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  J. Vogelstein,et al.  Cross-species functional alignment reveals evolutionary hierarchy within the connectome , 2019, NeuroImage.

[26]  Reinder Vos de Wael,et al.  Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding , 2018, Proceedings of the National Academy of Sciences.

[27]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[28]  Satrajit S. Ghosh,et al.  LittleBrain: A gradient-based tool for the topographical interpretation of cerebellar neuroimaging findings , 2018, bioRxiv.

[29]  Boris C. Bernhardt,et al.  Targeting Age-Related Differences in Brain and Cognition with Multimodal Imaging and Connectome Topography Profiling , 2019, bioRxiv.

[30]  Oluwasanmi Koyejo,et al.  Human cognition involves the dynamic integration of neural activity and neuromodulatory systems , 2019, Nature Neuroscience.

[31]  S. Dray,et al.  Generating spatially constrained null models for irregularly spaced data using Moran spectral randomization methods , 2015 .

[32]  Boris C. Bernhardt,et al.  A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems , 2019, Nature Communications.

[33]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[34]  C. Keysers,et al.  Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex , 2011, Human brain mapping.

[35]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[36]  Reinder Vos de Wael,et al.  A cortical wiring space links cellular architecture, functional dynamics and hierarchies in humans , 2020, bioRxiv.

[37]  Randy L. Buckner,et al.  The evolution of distributed association networks in the human brain , 2013, Trends in Cognitive Sciences.

[38]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[39]  Simon B Eickhoff,et al.  Imaging-based parcellations of the human brain , 2018, Nature Reviews Neuroscience.

[40]  Satrajit S. Ghosh,et al.  Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion , 2015, MICCAI.

[41]  Koen V. Haak,et al.  Functional corticostriatal connection topographies predict goal directed behaviour in humans , 2017, Nature Human Behaviour.

[42]  Andrew Zalesky,et al.  Insula Functional Connectivity in Schizophrenia: Subregions, Gradients, and Symptoms. , 2019, Biological psychiatry. Cognitive neuroscience and neuroimaging.

[43]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[44]  Shahin Tavakol,et al.  Multiscale Structure-Function Gradients in the Neonatal Connectome. , 2019, Cerebral cortex.

[45]  Nicola Palomero-Gallagher,et al.  Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas , 2017, NeuroImage.

[46]  KJ Worsley,et al.  SurfStat: A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory , 2009, NeuroImage.

[47]  Alan C. Evans,et al.  Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification , 2005, NeuroImage.

[48]  Haochang Shou,et al.  On testing for spatial correspondence between maps of human brain structure and function , 2018, NeuroImage.

[49]  D. Griffith Spatial Autocorrelation , 2020, Spatial Analysis Methods and Practice.

[50]  Ye Tian,et al.  Characterizing the functional connectivity diversity of the insula cortex: Subregions, diversity curves and behavior , 2018, NeuroImage.

[51]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[52]  P. B. Cipolloni,et al.  Cerebral Cortex: Architecture, Connections, and the Dual Origin Concept , 2015 .

[53]  Piotr Fryzlewicz,et al.  Random Rotation Ensembles , 2016, J. Mach. Learn. Res..

[54]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[55]  Julia M. Huntenburg,et al.  Large-Scale Gradients in Human Cortical Organization , 2018, Trends in Cognitive Sciences.

[56]  Reinder Vos de Wael,et al.  Atypical functional connectome hierarchy in autism , 2018, Nature Communications.

[57]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[58]  Daniel S. Margulies,et al.  Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey , 2019, Nature Communications.

[59]  Hao-Ting Wang,et al.  Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition , 2018, NeuroImage.

[60]  Guillén Fernández,et al.  The functional organisation of the hippocampus along its long axis is gradual and predicts recollection , 2018 .

[61]  A. McIntosh,et al.  Multivariate statistical analyses for neuroimaging data. , 2013, Annual review of psychology.

[62]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.