Damping Boundary Conditions for a Reduced Solution Domain Size and Effective Numerical Analysis of Heterogeneous Waveguides

In the current chapter we focus on the development of numerical methods to reduce the computational effort of finite element (FE)-based wave propagation analysis and to enable the modelling of heterogeneous cellular structures. To this end, we take two different approaches: (1) implementation of damping boundary conditions to reduce the solution domain, and (2) development of methodologies to approximately capture the heterogeneities of cellular sandwich materials. The main advantage of our approach is seen in the fact that it can be implemented in commercial FE software in a straightforward fashion. Using these approaches we can study the interaction of guided waves with heterogeneous and cellular microstructures with a significantly reduced numerical effort. By means of parametric studies we then extract important variables that influence the behavior of elastic waves in sandwich panels.

[1]  Guoliang Huang,et al.  On the study of surface wave propagation in concrete structures using a piezoelectric actuator/sensor system , 2008 .

[2]  Karan S. Surana,et al.  Transition finite elements for three‐dimensional stress analysis , 1980 .

[3]  Surendran Balendra,et al.  NUMERICAL MODELING OF DYNAMIC SOIL-PILE-STRUCTURE INTERACTION , 2005 .

[4]  Guoliang Huang,et al.  Guided wave propagation in honeycomb sandwich structures using a piezoelectric actuator/sensor system , 2009 .

[5]  Samir Mustapha,et al.  Assessment of debonding in sandwich CF/EP composite beams using A0 Lamb wave at low frequency , 2011 .

[6]  Suszanne Thwaites,et al.  NON-DESTRUCTIVE TESTING OF HONEYCOMB SANDWICH STRUCTURES USING ELASTIC WAVES , 1995 .

[7]  Thomas Fiedler,et al.  Numerical and Experimental Investigation of Hollow Sphere Structures in Sandwich Panels , 2008 .

[8]  Ulrich Gabbert,et al.  Numerical simulation of the guided Lamb wave propagation in particle reinforced composites , 2012 .

[9]  Imbo Sim,et al.  Nonreflecting boundary conditions for time-dependent wave propagation , 2010 .

[10]  U. Gabbert,et al.  Non-reflecting boundary condition for Lamb wave propagation problems in honeycomb and CFRP plates using dashpot elements , 2013 .

[11]  Laurence J. Jacobs,et al.  Modeling elastic wave propagation in waveguides with the finite element method , 1999 .

[12]  Hanxing Zhu,et al.  EFFECTS OF CELL IRREGULARITY ON THE ELASTIC PROPERTIES OF OPEN-CELL FOAMS , 2000 .

[13]  Peter Cawley,et al.  Efficient Numerical Modelling of Absorbing Regions for Boundaries Of Guided Waves Problems , 2006 .

[14]  Carlos E. S. Cesnik,et al.  Lamb‐Wave Based Structural Health Monitoring , 2005 .

[15]  Suyun Ham,et al.  Practical finite element based simulations of nondestructive evaluation methods for concrete , 2012 .

[16]  L. Thompson A review of finite-element methods for time-harmonic acoustics , 2006 .

[17]  Christian Willberg,et al.  The Phenomenon of Continuous Mode Conversion of Lamb Waves in CFRP Plates , 2012 .

[18]  L. Greengard,et al.  Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .

[19]  Ulrich Gabbert,et al.  Numerical simulation of Lamb wave propagation in metallic foam sandwich structures : a parametric study , 2013 .

[20]  Torsten Kohrs,et al.  Wave beaming and wave propagation in light weight plates with truss-like cores , 2009 .

[21]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[22]  F. Yuan,et al.  Group velocity and characteristic wave curves of Lamb waves in composites: Modeling and experiments , 2007 .

[23]  J. Lysmer,et al.  Finite Dynamic Model for Infinite Media , 1969 .

[24]  Ewaryst Wierzbicki,et al.  On the dynamic behavior of honeycomb based composite solids , 2000 .

[25]  D. Osmont,et al.  Damage detection in foam core sandwich structures using guided waves , 2009 .

[26]  U. Gabbert,et al.  Comparison of different higher order finite element schemes for the simulation of Lamb waves , 2012 .

[27]  Massimo Ruzzene,et al.  Wave beaming effects in two-dimensional cellular structures , 2003 .

[28]  Christophe Paget Active Health Monitoring of Aerospace Composite Structures by Embedded Piezoceramic Transducers , 2001 .

[29]  Ulrich Gabbert,et al.  Damage Localization in Plates Using Mode Conversion Characteristics of Ultrasonic Guided Waves , 2013 .

[30]  Gui-Rong Liu,et al.  A non-reflecting boundary for analyzing wave propagation using the finite element method , 2003 .

[31]  Ulrich Gabbert,et al.  Numerical simulation of the Lamb wave propagation in honeycomb sandwich panels: A parametric study , 2013 .