Optical rogue waves in integrable turbulence

Using experiments with single mode optical fibers and numerical simulations, we investigate the statistics of partially coherent waves propagating in the anomalous dispersion regime (P. Walczak et al., 114, Phys. Rev. Lett. (2015)). Using an asynchronous optical sampling setup, we measure precisely the probability density function (PDF) of the optical power that fluctuates randomly and rapidly with time. The resolution time of our fast-measurement of the PDF is better than 250fs. Along the propagation inside the nonlinear fiber, the PDF is found to evolve from the normal law to a strong heavy-tailed distribution. Numerical simulations of the one-dimensional nonlinear Schrödinger equation (1D-NLSE) with stochastic initial conditions reproduce quantitatively the experiments. Our experimental and numerical study demonstrates the formation of rogue waves in the focusing regime of integrable turbulence. Moreover, our numerical investigations suggest that the statistical features experimentally observed rely on the stochastic generation of coherent analytic solutions of 1D-NLSE such as solitons on finite background.

[1]  V. E. Zakharov,et al.  Integrable turbulence and formation of rogue waves , 2014, 1409.4692.

[2]  Bahram Jalali,et al.  Fluctuations and correlations in modulation instability , 2012, Nature Photonics.

[3]  Intermittency in integrable turbulence , 2014 .

[4]  S. Nazarenko Wave Turbulence Formalism , 2011 .

[5]  J. Dudley,et al.  Rogue-wave-like characteristics in femtosecond supercontinuum generation. , 2009, Optics letters.

[6]  D. Agafontsev Extreme waves statistics for the Ablowitz-Ladik system , 2013, 1310.4406.

[7]  Cyril Billet,et al.  Emergent rogue wave structures and statistics in spontaneous modulation instability , 2015, Scientific Reports.

[8]  G. Millot,et al.  Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers. , 2008, Optics express.

[9]  Guy Millot,et al.  Collision of Akhmediev Breathers in Nonlinear Fiber Optics , 2013 .

[10]  N. Hoffmann,et al.  Rogue wave observation in a water wave tank. , 2011, Physical review letters.

[11]  J. Fatome,et al.  Observation of Kuznetsov-Ma soliton dynamics in optical fibre , 2012, Scientific Reports.

[12]  C T Stansberg,et al.  Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Nobuhito Mori,et al.  On the Estimation of the Kurtosis in Directional Sea States for Freak Wave Forecasting , 2011 .

[14]  C. Finot,et al.  Soliton and rogue wave statistics in supercontinuum generation in photonic crystal fibre with two zero dispersion wavelengths , 2009 .

[15]  Cristina Masoller,et al.  Deterministic optical rogue waves. , 2011, Physical review letters.

[16]  G. Millot,et al.  Extreme events in optics: Challenges of the MANUREVA project , 2010 .

[17]  Hanbury-Brown and Twiss Interferometry with Interacting Photons , 2008 .

[18]  G. Millot,et al.  Observation of Optical Undular Bores in Multiple Four-Wave Mixing , 2014 .

[19]  J. Soto-Crespo,et al.  Extreme waves that appear from nowhere: On the nature of rogue waves , 2009 .

[20]  V E Zakharov,et al.  Nonlinear stage of modulation instability. , 2012, Physical review letters.

[21]  L. Larger,et al.  Real-time full bandwidth measurement of spectral noise in supercontinuum generation , 2012, Scientific reports.

[22]  Umberto Bortolozzo,et al.  Rogue waves and their generating mechanisms in different physical contexts , 2013 .

[23]  S. Sugavanam,et al.  The laminar–turbulent transition in a fibre laser , 2013, Nature Photonics.

[24]  D. Solli,et al.  Recent progress in investigating optical rogue waves , 2013 .

[25]  H. Mahr,et al.  An optical up-conversion light gate with picosecond resolution , 1975 .

[26]  P. Suret,et al.  Wave turbulence in integrable systems: nonlinear propagation of incoherent optical waves in single-mode fibers. , 2011, Optics express.

[27]  T. Joo,et al.  Noncollinear phase matching in fluorescence upconversion. , 2005, Optics letters.

[28]  Bahram Jalali,et al.  Real-time measurements, rare events and photon economics , 2010 .

[29]  Vladimir E. Zakharov,et al.  Turbulence in Integrable Systems , 2009 .

[30]  R. Grimshaw,et al.  Two-soliton interaction as an elementary act of soliton turbulence in integrable systems , 2013 .

[31]  A. Osborne,et al.  Freak waves in random oceanic sea states. , 2001, Physical review letters.

[32]  C. Finot,et al.  Emergence of rogue waves from optical turbulence , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[33]  J. Wolf,et al.  Optical rogue wave statistics in laser filamentation. , 2009, Optics express.

[34]  Pierre Suret,et al.  Optical rogue waves in integrable turbulence. , 2014, Physical review letters.

[35]  John M. Dudley,et al.  The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface , 2015 .

[36]  F. Arecchi,et al.  Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. , 2009, Physical review letters.

[37]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[38]  N. Hoffmann,et al.  Hydrodynamic supercontinuum. , 2013, Physical review letters.

[39]  Pierre Suret,et al.  Experimental evidence of extreme value statistics in Raman fiber lasers. , 2012, Optics letters.

[40]  B. Jalali,et al.  Active control of rogue waves for stimulated supercontinuum generation. , 2008, Physical review letters.

[41]  Luigi Cavaleri,et al.  Modulational instability and non-Gaussian statistics in experimental random water-wave trains , 2005 .

[42]  P. Grelu,et al.  Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. , 2012, Physical review letters.

[43]  Modeling extreme wave heights from laboratory experiments with the nonlinear Schrödinger equation , 2013 .

[44]  A Iafrati,et al.  Modulational instability, wave breaking, and formation of large-scale dipoles in the atmosphere. , 2012, Physical review letters.

[45]  P. Suret,et al.  Statistics of a turbulent Raman fiber laser. , 2015, Optics letters.

[46]  P. Suret,et al.  Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber. , 2006, Optics letters.

[47]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[48]  N. Akhmediev,et al.  Waves that appear from nowhere and disappear without a trace , 2009 .

[49]  F. Dias,et al.  Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. , 2009, Optics express.

[50]  C. Finot,et al.  Rogue waves, rational solitons and wave turbulence theory , 2011 .

[51]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[52]  K. Goda,et al.  Dispersive Fourier transformation for fast continuous single-shot measurements , 2013, Nature Photonics.

[53]  Miro Erkintalo,et al.  Instabilities, breathers and rogue waves in optics , 2014, Nature Photonics.

[54]  Pierre Suret,et al.  Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics , 2014 .

[55]  Sergei K. Turitsyn,et al.  Soliton-based discriminator of noncoherent optical pulses , 2008 .

[56]  Peter A. E. M. Janssen,et al.  Nonlinear Four-Wave Interactions and Freak Waves , 2003 .