EVALUATION OF AUTOMATIC DOMAIN PARTITIONING ALGORITHMS FOR PARALLEL FINITE ELEMENT ANALYSIS

SUMMARY This paper studies and compares the domain partitioning algorithms presented by Farhat,1 Al-Nasra and Nguyen,2 Malone,3 and Simon4/Hsieh et al.5,6 for load balancing in parallel finite element analysis. Both the strengths and weaknesses of these algorithms are discussed. Some possible improvements to the partitioning algorithms are also suggested and studied. A new approach for evaluating domain partitioning algorithms is described. Direct numerical comparisons among the considered partitioning algorithms are then conducted using this suggested approach with both regular and irregular finite element meshes of di⁄erent order and dimensionality. The test problems used in the comparative studies along with the results obtained provide a set of benchmark examples for other researchers to evaluate both new and existing partitioning algorithms. In addition, interactive graphics tools used in this work to facilitate the evaluation and comparative studies are presented.

[1]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[2]  Alan George,et al.  An Implementation of a Pseudoperipheral Node Finder , 1979, TOMS.

[3]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[4]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[5]  Bruce Hendrickson,et al.  An empirical study of static load balancing algorithms , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[6]  J. G. Malone Automated mesh decomposition and concurrent finite element analysis for hypercube multiprocessor computers , 1988 .

[7]  Charbel Farhat,et al.  Mesh partitioning algorithms for the parallel solution of partial differential equations , 1993 .

[8]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[9]  J. F. Abel,et al.  Use of networked workstations for parallel nonlinear structural dynamic simulations of rotating bladed-disk assemblies , 1993 .

[10]  Duc T. Nguyen,et al.  An algorithm for domain decomposition in finite element analysis , 1991 .

[11]  Steve W. Otto,et al.  Optimal mapping of irregular finite element domains to parallel processors , 1987 .

[12]  S.,et al.  An Efficient Heuristic Procedure for Partitioning Graphs , 2022 .

[13]  Joe Padovan,et al.  Hierarchically Parallelized Constrained Nonlinear Solvers with Automated Substructuring , 1994 .

[14]  Asad I. Khan,et al.  Subdomain generation for parallel finite element analysis , 1993 .

[15]  William G. Poole,et al.  An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .

[16]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[17]  Hajjar,et al.  Parallel processing for transient nonlinear structural dynamics of three-dimensional framed structures , 1988 .

[18]  Gregory W. Brown,et al.  Mesh partitioning for implicit computations via iterative domain decomposition: Impact and optimization of the subdomain aspect ratio , 1995 .

[19]  B. Nour-Omid,et al.  Solving finite element equations on concurrent computers , 1987 .

[20]  Jerome F. Hajjar,et al.  Parallel processing of central difference transient analysis for three-dimensional nonlinear framed structures , 1989 .

[21]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[22]  B. H. V. Topping,et al.  An Optimization-Based Approach to the Domain Decomposition Problem in Parallel Finite Element Analysis , 1993 .

[23]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[24]  S.-H. Hsieh A mesh partitioning tool and its applications to parallel processing , 1994, Proceedings of 1994 International Conference on Parallel and Distributed Systems.

[25]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[26]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[27]  Shang-Hsien Hsieh,et al.  Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies , 1993 .

[28]  John F. Abel,et al.  Recursive spectral algorithms for automatic domain partitioning in parallel finite element analysis , 1995 .

[29]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[30]  E. Barnes An algorithm for partitioning the nodes of a graph , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[31]  Charbel Farhat,et al.  Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics , 1993 .

[32]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[33]  A. H. Sherman,et al.  Comparative Analysis of the Cuthill–McKee and the Reverse Cuthill–McKee Ordering Algorithms for Sparse Matrices , 1976 .

[34]  Stéphane Lanteri,et al.  TOP/DOMDEC : a software tool for mesh partitioning and parallel processing and applications to CSM a , 1995 .

[35]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[36]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[37]  Marcelo Gattass,et al.  A NEW ALGORITHM FOR FINDING A PSEUDOPERIPHERAL VERTEX OR THE ENDPOINTS OF A PSEUDODIAMETER IN A GRAPH , 1994 .

[38]  Geoffrey C. Fox,et al.  A Review of Automatic Load Balancing and Decomposition Methods for the Hypercube , 1988 .

[39]  J. Rodriguez,et al.  Domain decomposition study for a parallel finite element code , 1992 .

[40]  Charbel Farhat,et al.  A simple and efficient automatic fem domain decomposer , 1988 .

[41]  Jari Puttonen,et al.  Simple and effective bandwidth reduction algorithm , 1983 .

[42]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[43]  Iain S. Duff,et al.  Sparse matrix test problems , 1982 .

[44]  R. Collins Bandwidth reduction by automatic renumbering , 1973 .

[45]  Roy D. Williams,et al.  Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991, Concurr. Pract. Exp..

[46]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[47]  Gary L. Miller,et al.  Automatic Mesh Partitioning , 1992 .

[48]  Alan George,et al.  A linear time implementation of the reverse Cuthill-McKee algorithm , 1980, BIT.

[49]  J. G. Malone Parallel nonlinear dynamic finite element analysis of three-dimensional shell structures , 1990 .