Efficient Computation of Current Collection in Bare Electrodynamic Tethers in and beyond OML Regime

AbstractOne key issue in the simulation of bare electrodynamic tethers (EDTs) is the accurate and fast computation of the collected current, an ambient dependent operation necessary to determine the Lorentz force for each time step. This paper introduces a novel semianalytical solution that allows researchers to compute the current distribution along the tether efficient and effectively under orbital-motion-limited (OML) and beyond OML conditions, i.e., if tether radius is greater than a certain ambient dependent threshold. The method reduces the original boundary value problem to a couple of nonlinear equations. If certain dimensionless variables are used, the beyond OML effect just makes the tether characteristic length L* larger and it is decoupled from the current determination problem. A validation of the results and a comparison of the performance in terms of the time consumed is provided, with respect to a previous ad hoc solution and a conventional shooting method.

[1]  R. D. Estes,et al.  The orbital-motion-limited regime of cylindrical Langmuir probes , 1999 .

[2]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[4]  Jesus Pelaez,et al.  Generator Regime of Self-Balanced Electrodynamic Bare Tethers , 2006 .

[5]  Eduardo Ahedo,et al.  Bare wire anodes for electrodynamic tethers , 1993 .

[6]  Les Johnson,et al.  Propulsive Small Expendable Deployer System Experiment , 2000 .

[7]  G. Sánchez-Arriaga,et al.  Direct Vlasov simulations of electron-attracting cylindrical Langmuir probes in flowing plasmas , 2014 .

[8]  Claudio Bombardelli,et al.  Asymptotic Solution for the Current Profile of Passive Bare Electrodynamic Tethers , 2010 .

[9]  Manuel Martinez-Sanchez,et al.  Electrodynamic Tether Applications and Constraints , 2010 .

[10]  Enrico C. Lorenzini,et al.  Exploration of outer planets using tethers for power and propulsion , 2005 .

[11]  J. R. Sanmart Analysis of Bare-Tether Systems for Deorbiting Low-Earth-Orbit Satellites , 2002 .

[12]  A. S. Torres Electrodynamic Tethers For Planetary And De-orbiting Missions , 2014 .

[13]  Enrico C. Lorenzini,et al.  Efficiency of Electrodynamic Tether Thrusters , 2006 .

[14]  Juan R. Sanmartin,et al.  Survival probability of round and tape tethers against debris impact , 2013 .

[15]  R. D. Estes,et al.  Cylindrical Langmuir probes beyond the orbital-motion-limited regime , 2000 .

[16]  Robert D. Estes,et al.  Efficiency of different types of ED-tether thrusters , 2001 .

[17]  E. C. Lorenzini,et al.  A New Kind of Dynamic Instability in Electrodynamic Tethers , 2000 .

[18]  L. W. Parker,et al.  Probe design for orbit‐limited current collection , 1973 .

[19]  M. Martinez-Sanchez,et al.  Floating bare tether as upper atmosphere probe , 2006 .

[20]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .