The Spectrum of Circulant-Like Preconditioners for Some General Linear Multistep Formulas for Linear Boundary Value Problems

The spectrum of the eigenvalues, the conditioning, and other related properties of circulant-like matrices used to build up block preconditioners for the nonsymmetric algebraic linear equations of time-step integrators for linear boundary value problems are analyzed. Moreover, results concerning the entries of a class of Toeplitz matrices related to the latter are proposed. Generalizations of implicit linear multistep formulas in boundary value form are considered in more detail. It is proven that there exists a new class of approximations which are well conditioned and whose eigenvalues have positive and bounded real and bounded imaginary part. Moreover, it is observed that preconditioners based on other circulant-like approximations, which are well suited for Hermitian linear systems, can be severely ill conditioned even if the matrices of the nonpreconditioned system are well conditioned.

[1]  Eugene E. Tyrtyshnikov,et al.  Optimal and Superoptimal Circulant Preconditioners , 1992, SIAM J. Matrix Anal. Appl..

[2]  Daniele Bertaccini,et al.  Reliable preconditioned iterative linear solvers for some numerical integrators , 2001, Numer. Linear Algebra Appl..

[3]  Tobin A. Driscoll,et al.  From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..

[4]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[5]  P. Heywood Trigonometric Series , 1968, Nature.

[6]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[7]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[8]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[9]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[10]  Michael K. Ng,et al.  Skew-Circulant Preconditioners for Systems of LMF-Based ODE Codes , 2000, NAA.

[11]  Daniele Bertaccini,et al.  A Circulant Preconditioner for the Systems of LMF-Based ODE Codes , 2000, SIAM J. Sci. Comput..

[12]  E. Artin,et al.  The Gamma Function , 1964 .

[13]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[14]  Stefano Serra Capizzano,et al.  Toeplitz Preconditioners Constructed from Linear Approximation Processes , 1999, SIAM J. Matrix Anal. Appl..

[15]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[16]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .

[17]  J. G. Verwer,et al.  Boundary value techniques for initial value problems in ordinary differential equations , 1983 .

[18]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[19]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[20]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[21]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[22]  Michael K. Ng,et al.  The Convergence Rate of Block Preconditioned Systems Arising from LMF-based ODE Codes , 2001 .

[23]  Eugene E. Tyrtyshnikov,et al.  Circulant preconditioners with unbounded inverses , 1995 .