Fluxonic Processing of Photonic Synapse Events

Much of the information processing performed by a biological neuron occurs in the dendritic tree. For artificial neural systems using light for communication, it is advantageous to convert signals to the electronic domain at synaptic terminals, so dendritic computation can be performed with electrical circuits. Here, we present circuits based on Josephson junctions and mutual inductors that act as dendrites, processing signals from synapses receiving single-photon communication events with superconducting detectors. We show simulations of circuits performing basic temporal filtering, logical operations, and nonlinear transfer functions. We further show how the synaptic signal from a single photon can fan out locally in the electronic domain to enable the dendrites of the receiving neuron to process a photonic synapse event or pulse train in multiple different ways simultaneously. Such a technique makes efficient use of photons, energy, space, and information.

[1]  György Buzsáki,et al.  Tasks for inhibitory interneurons in intact brain circuits , 2015, Neuropharmacology.

[2]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[3]  Michael L. Schneider,et al.  Ultralow power artificial synapses using nanotextured magnetic Josephson junctions , 2018, Science Advances.

[4]  Indranil Chakraborty,et al.  Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons , 2018, Scientific Reports.

[5]  Subutai Ahmad,et al.  Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex , 2015, Front. Neural Circuits.

[6]  Herbert Kroemer,et al.  Introduction to superconducting circuits , 1999 .

[7]  Tetsuya Asai,et al.  Pulsed Neural Networks Consisting of Single-Flux-Quantum Spiking Neurons , 2007 .

[8]  Dirk Englund,et al.  Deep learning with coherent nanophotonic circuits , 2017, 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S).

[9]  T. Fujii,et al.  Theoretical basis of SQUID-based artificial neurons , 2018, Journal of Applied Physics.

[10]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[11]  Sae Woo Nam,et al.  Superconducting optoelectronic loop neurons , 2019, Journal of Applied Physics.

[12]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[13]  Sae Woo Nam,et al.  Superconducting optoelectronic circuits for neuromorphic computing , 2016, ArXiv.

[14]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[15]  F. Marsili,et al.  Detecting single infrared photons with 93% system efficiency , 2012, 1209.5774.

[16]  Jeffrey M. Shainline,et al.  Optoelectronic Intelligence , 2020, Applied Physics Letters.

[17]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[18]  Patrick Crotty,et al.  Synchronization dynamics on the picosecond timescale in coupled Josephson junction neurons , 2016, Physical review. E.

[19]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[20]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[21]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[22]  Ido Kanter,et al.  New Types of Experiments Reveal that a Neuron Functions as Multiple Independent Threshold Units , 2017, Scientific Reports.

[23]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[24]  T. Duzer,et al.  Principles of superconductive devices and circuits, (second ed.) , 1998 .

[25]  V. Anant,et al.  Modeling the Electrical and Thermal Response of Superconducting Nanowire Single-Photon Detectors , 2007, IEEE Transactions on Applied Superconductivity.

[26]  W. Gerstner,et al.  Spike-Timing-Dependent Plasticity: A Comprehensive Overview , 2012, Front. Syn. Neurosci..

[27]  Sae Woo Nam,et al.  Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss , 2017 .

[28]  Sae Woo Nam,et al.  Circuit designs for superconducting optoelectronic loop neurons , 2018, Journal of Applied Physics.

[29]  P. R. Prucnal,et al.  A Leaky Integrate-and-Fire Laser Neuron for Ultrafast Cognitive Computing , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Nelson Spruston,et al.  Dendritic integration: 60 years of progress , 2015, Nature Neuroscience.

[31]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[32]  T. Van Duzer,et al.  Principles of Superconductive Devices and Circuits , 1981 .

[33]  Sae Woo Nam,et al.  Design, fabrication, and metrology of 10 × 100 multi-planar integrated photonic routing manifolds for neural networks , 2018, APL Photonics.

[34]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[35]  Patrick Crotty,et al.  Josephson junction simulation of neurons. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Z. Wang,et al.  Electrical Characteristics of Superconducting Nanowire Single Photon Detector , 2013, IEEE Transactions on Applied Superconductivity.

[37]  Christof Koch,et al.  Computation and the single neuron , 1997, Nature.

[38]  Ellen Zhou,et al.  Neuromorphic photonic networks using silicon photonic weight banks , 2017, Scientific Reports.

[39]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[40]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[41]  Jeffrey M. Shainline,et al.  The Largest Cognitive Systems Will be Optoelectronic , 2018, 2018 IEEE International Conference on Rebooting Computing (ICRC).

[42]  John M Beggs,et al.  The criticality hypothesis: how local cortical networks might optimize information processing , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Sae Woo Nam,et al.  All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. , 2017, Applied physics letters.

[44]  P. Prucnal,et al.  NEUROMORPHIC PHOTONICS , 2017 .

[45]  Michael L. Schneider,et al.  Stochastic single flux quantum neuromorphic computing using magnetically tunable Josephson junctions , 2016, 2016 IEEE International Conference on Rebooting Computing (ICRC).

[46]  C. M. Natarajan,et al.  Superconducting nanowire single-photon detectors: physics and applications , 2012, 1204.5560.

[47]  S. R. Whiteley,et al.  Josephson junctions in SPICE3 , 1991 .