Multi Space Reduced Basis Preconditioners for Large-Scale Parametrized PDEs

In this work we introduce a new two-level preconditioner for the efficient solution of large-scale linear systems arising from the discretization of parametrized PDEs. The proposed preconditioner combines in a multiplicative way a reduced basis solver, which plays the role of coarse component, and a “traditional” fine-grid preconditioner, such as one-level additive Schwarz, block Gauss--Seidel, or block Jacobi preconditioners. The coarse component is built upon a new multi space reduced basis (MSRB) method that we introduce for the first time in this paper, where a reduced basis space is built through the proper orthogonal decomposition algorithm at each step of the iterative method at hand, like the flexible GMRES method. MSRB strategy consists in building reduced basis spaces that are well suited to perform a single iteration, by addressing the error components which have not been treated yet. The Krylov iterations employed to solve the resulting preconditioned system target small tolerances with a very...

[1]  Christian Rey,et al.  Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems , 2004, Numerical Algorithms.

[2]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[3]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[4]  Gianluigi Rozza,et al.  Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .

[5]  David Amsallem,et al.  Efficient model reduction of parametrized systems by matrix discrete empirical interpolation , 2015, J. Comput. Phys..

[6]  Alfio Quarteroni,et al.  Mathematical and Numerical Modeling of Solute Dynamics in Blood Flow and Arterial Walls , 2001, SIAM J. Numer. Anal..

[7]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .

[8]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[9]  Serkan Gugercin,et al.  Interpolatory Model Reduction of Large-Scale Dynamical Systems , 2010 .

[10]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[11]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[12]  C. Farhat,et al.  Extending substructure based iterative solvers to multiple load and repeated analyses , 1994 .

[13]  Gianluigi Rozza,et al.  Reduced Basis Method for Parametrized Elliptic Optimal Control Problems , 2013, SIAM J. Sci. Comput..

[14]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[15]  Gianluigi Rozza,et al.  Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity , 2009, J. Comput. Phys..

[16]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[17]  G. Pini,et al.  Shifted FSAI preconditioners for the efficient parallel solution of non‐linear groundwater flow models , 2012 .

[18]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[19]  A. J. Wathen,et al.  Preconditioning , 2015, Acta Numerica.

[20]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[21]  Peter Benner,et al.  On recycling Krylov subspaces for solving linear systems with successive right-hand sides with applications in model reduction , 2006 .

[22]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[23]  Anthony Nouy,et al.  Interpolation of Inverse Operators for Preconditioning Parameter-Dependent Equations , 2015, SIAM J. Sci. Comput..

[24]  Eric de Sturler,et al.  Recycling BiCG with an Application to Model Reduction , 2010, SIAM J. Sci. Comput..

[25]  Kevin Carlberg,et al.  Krylov-Subspace Recycling via the POD-Augmented Conjugate-Gradient Method , 2015, SIAM J. Matrix Anal. Appl..

[26]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[27]  Simone Deparis,et al.  Reduced Basis Error Bound Computation of Parameter-Dependent Navier-Stokes Equations by the Natural Norm Approach , 2008, SIAM J. Numer. Anal..

[28]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[29]  Daniela di Serafino,et al.  Efficient Preconditioner Updates for Shifted Linear Systems , 2011, SIAM J. Sci. Comput..

[30]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[31]  Simone Deparis,et al.  Fluid-structure interaction for vascular flows: from supercomputers to laptops , 2017 .

[32]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[33]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[34]  G Coppola,et al.  Oxygen mass transfer in a model three-dimensional artery , 2008, Journal of The Royal Society Interface.

[35]  Gianluigi Rozza,et al.  Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations , 2015, Comput. Math. Appl..

[36]  Andrea Manzoni,et al.  An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows , 2014 .

[37]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[38]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[39]  Daniele Bertaccini,et al.  Interpolating preconditioners for the solution of sequence of linear systems , 2016, Comput. Math. Appl..

[40]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[41]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[42]  Howard C. Elman,et al.  Preconditioning Techniques for Reduced Basis Methods for Parameterized Elliptic Partial Differential Equations , 2015, SIAM J. Sci. Comput..

[43]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[44]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .

[45]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..

[46]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[47]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[48]  Yvon Maday,et al.  Parametric Analytical Preconditioning and its Applications to the Reduced Collocation Methods , 2014, 1403.7273.

[49]  Gianluigi Rozza,et al.  Parametrized Differential Equations , 2016 .

[50]  M. Caputo,et al.  Simulation of oxygen transfer in stented arteries and correlation with in‐stent restenosis , 2013, International journal for numerical methods in biomedical engineering.