Identification of Yeast Rho1p GTPase as a Regulatory Subunit of 1,3-β-Glucan Synthase

1,3-β-D-Glucan synthase [also known as β(1→3)glucan synthase] is a multi-enzyme complex that catalyzes the synthesis of 1,3-β-linked glucan, a major structural component of the yeast cell wall. Temperature-sensitive mutants in the essential Rho-type guanosine triphosphatase (GTPase), Rho1p, displayed thermolabile glucan synthase activity, which was restored by the addition of recombinant Rho1p. Glucan synthase from mutants expressing constitutively active Rho1p did not require exogenous guanosine triphosphate for activity. Rho1p copurified with β(1→3)glucan synthase and associated with the Fks1p subunit of this complex in vivo. Both proteins were localized predominantly at sites of cell wall remodeling. Therefore, it appears that Rho1p is a regulatory subunit of β(1→3)glucan synthase.

[1]  K. Tanaka,et al.  A downstream target of RHO1 small GTP‐binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. , 1995, The EMBO journal.

[2]  B. Haarer,et al.  Fluorescence microscopy methods for yeast. , 1989, Methods in cell biology.

[3]  D. Botstein,et al.  Conditional lethality of a yeast strain expressing human RHOA in place of RHO1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Y. Zheng,et al.  Control of the yeast bud-site assembly GTPase Cdc42. Catalysis of guanine nucleotide exchange by Cdc24 and stimulation of GTPase activity by Bem3. , 1994, The Journal of biological chemistry.

[5]  M. Cyert,et al.  Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H(+)-ATPase , 1995, Molecular and cellular biology.

[6]  Y. Anraku,et al.  Activation of Yeast Protein Kinase C by Rho1 GTPase (*) , 1996, The Journal of Biological Chemistry.

[7]  J. T. Mullins,et al.  A GTP-binding protein regulates the activity of (1-->3)-beta-glucan synthase, an enzyme directly involved in yeast cell wall morphogenesis. , 1994, The Journal of biological chemistry.

[8]  U. Jung,et al.  The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. , 1995, Genes & development.

[9]  C. Der,et al.  Biological and biochemical properties of human ras H genes mutated at codon 61 , 1986, Cell.

[10]  R. Axel,et al.  Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[11]  F. Klis,et al.  Identification of two cell cycle regulated genes affecting the β1,3‐glucan content of cell walls in Saccharomyces cerevisiae , 1995, FEBS letters.

[12]  K. Tanaka,et al.  Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae , 1994, The Journal of cell biology.

[13]  T. Watanabe,et al.  Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. , 1995, European journal of biochemistry.

[14]  E. Cabib,et al.  Stimulation of beta(1----3)glucan synthetase of various fungi by nucleoside triphosphates: generalized regulatory mechanism for cell wall biosynthesis , 1985, Journal of bacteriology.

[15]  N. Morin,et al.  Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase , 1995, Molecular and cellular biology.

[16]  N. Morin,et al.  The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[17]  F. Klis Review: Cell wall assembly in yeast , 1994, Yeast.

[18]  T. Toda,et al.  Two novel protein kinase C‐related genes of fission yeast are essential for cell viability and implicated in cell shape control. , 1993, The EMBO journal.