Visinin-like protein 1 regulates natriuretic peptide receptor B in the heart

[1]  M. Emdin,et al.  Expression of C-type natriuretic peptide and of its receptor NPR-B in normal and failing heart , 2008, Peptides.

[2]  Xin Xu,et al.  Differential regulation of membrane guanylyl cyclases in congestive heart failure: natriuretic peptide receptor (NPR)-B, Not NPR-A, is the predominant natriuretic peptide receptor in the failing heart. , 2007, Endocrinology.

[3]  Xin Xu,et al.  Renal hyporesponsiveness to atrial natriuretic peptide in congestive heart failure results from reduced atrial natriuretic peptide receptor concentrations. , 2007, American journal of physiology. Renal physiology.

[4]  Anastassios V. Tzingounis,et al.  Hippocalcin Gates the Calcium Activation of the Slow Afterhyperpolarization in Hippocampal Pyramidal Cells , 2007, Neuron.

[5]  Catherine B. Chan,et al.  The Neuronal Ca2+ Sensor Protein Visinin-like Protein-1 Is Expressed in Pancreatic Islets and Regulates Insulin Secretion* , 2006, Journal of Biological Chemistry.

[6]  S. Bornstein,et al.  Human adipocytes attenuate cardiomyocyte contraction: characterization of an adipocyte‐derived negative inotropic activity , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  V. Regitz-Zagrosek,et al.  Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats , 2006, European journal of heart failure.

[8]  J. Downey,et al.  Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts , 2006, Basic Research in Cardiology.

[9]  P. Busk,et al.  Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy. , 2006, American journal of physiology. Heart and circulatory physiology.

[10]  J. Monti,et al.  Cardiac hypertrophy in transgenic rats expressing a dominant-negative mutant of the natriuretic peptide receptor B. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Dickey,et al.  Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. , 2006, Endocrine reviews.

[12]  G. Wallukat,et al.  Agonistic Antibodies Directed at the Angiotensin II, AT1 Receptor in Preeclampsia , 2006, The Journal of the Society for Gynecologic Investigation: JSGI.

[13]  D. Smirnov,et al.  Differential regulation of NPR-B/GC-B by protein kinase c and calcium. , 2005, Biochemical pharmacology.

[14]  G. Collingridge,et al.  Hippocalcin Functions as a Calcium Sensor in Hippocampal LTD , 2005, Neuron.

[15]  D. Smirnov,et al.  Differential regulation of NPR-B/GC-B by protein kinase C and calcium , 2005, BMC Pharmacology.

[16]  S. Schuchmann,et al.  Neuronal Ca2+ sensor protein VILIP-1 affects cGMP signalling of guanylyl cyclase B by regulating clathrin-dependent receptor recycling in hippocampal neurons , 2005, Journal of Cell Science.

[17]  Yoshihiro Kokubo,et al.  Hypertension susceptibility genes on chromosome 2p24-p25 in a general Japanese population , 2005, Journal of hypertension.

[18]  K. Mori,et al.  C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. , 2005, Journal of the American College of Cardiology.

[19]  U. Heinemann,et al.  Expression analysis of members of the neuronal calcium sensor protein family: combining bioinformatics and Western blot analysis. , 2004, Biochemical and biophysical research communications.

[20]  D. Manahan‐Vaughan,et al.  MGluRs regulate the expression of neuronal calcium sensor proteins NCS-1 and VILIP-1 and the immediate early gene arg3.1/arc in the hippocampus in vivo. , 2004, Biochemical and biophysical research communications.

[21]  D. Gardner,et al.  Transcriptional Regulation of Type B Human Natriuretic Peptide Receptor Gene Promoter: Dependence on Sp1 , 2004, Hypertension.

[22]  R. Dietz,et al.  Forced Homodimerization by Site-Directed Mutagenesis Alters Guanylyl Cyclase Activity of Natriuretic Peptide Receptor B , 2004, Hypertension.

[23]  N. Tamura,et al.  Regulation of the Guanylyl Cyclase-B Receptor by Alternative Splicing* , 2003, Journal of Biological Chemistry.

[24]  P. M. Bryan,et al.  The atrial natriuretic peptide receptor (NPR-A/GC-A) is dephosphorylated by distinct microcystin-sensitive and magnesium-dependent protein phosphatases , 2003 .

[25]  T. Goodrow,et al.  Overexpression of the calcium sensor visinin-like protein-1 leads to a cAMP-mediated decrease of in vivo and in vitro growth and invasiveness of squamous cell carcinoma cells. , 2003, Cancer research.

[26]  D. Manahan‐Vaughan,et al.  Group I mGlu receptors regulate the expression of the neuronal calcium sensor protein VILIP-1 in vitro and in vivo: implications for mGlu receptor-dependent hippocampal plasticity? , 2003, Neuropharmacology.

[27]  Michael D. Schneider,et al.  Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. , 2003, The Journal of clinical investigation.

[28]  C. Spilker,et al.  Brain region-specific changes in the expression of calcium sensor proteins after repeated applications of ketamine to rats , 2003, Neuroscience Letters.

[29]  R. Ritchie,et al.  Antihypertrophic actions of the natriuretic peptides in adult rat cardiomyocytes: importance of cyclic GMP. , 2003, Cardiovascular research.

[30]  L. Potter,et al.  Vasopressin-dependent Inhibition of the C-type Natriuretic Peptide Receptor, NPR-B/GC-B, Requires Elevated Intracellular Calcium Concentrations* , 2002, The Journal of Biological Chemistry.

[31]  E. Gundelfinger,et al.  The Calcium Sensor Protein Visinin-like Protein-1 Modulates the Surface Expression and Agonist Sensitivity of the α4β2 Nicotinic Acetylcholine Receptor* , 2002, The Journal of Biological Chemistry.

[32]  R Anand,et al.  Intracellular neuronal calcium sensor (NCS) protein VILIP‐1 modulates cGMP signalling pathways in transfected neural cells and cerebellar granule neurones , 2001, Journal of neurochemistry.

[33]  M. Andreassi,et al.  Up‐regulation of ‘clearance’ receptors in patients with chronic heart failure: a possible explanation for the resistance to biological effects of cardiac natriuretic hormones , 2001, European journal of heart failure.

[34]  C. Hall The value of natriuretic peptides for the management of heart failure: current state of play , 2001, European journal of heart failure.

[35]  C. Roberts,et al.  Natriuretic peptide signalling: molecular and cellular pathways to growth regulation. , 2001, Cellular signalling.

[36]  D. Garbers,et al.  A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  B. Bogerts,et al.  Abnormal Localization of Two Neuronal Calcium Sensor Proteins, Visinin-Like Proteins (VILIPs)-1 and -3, in Neocortical Brain Areas of Alzheimer Disease Patients , 2001, Dementia and Geriatric Cognitive Disorders.

[38]  V. Tuohy,et al.  Visinin-like Protein (VILIP) Is a Neuron-specific Calcium-dependent Double-stranded RNA-binding Protein* , 1999, The Journal of Biological Chemistry.

[39]  K. Schlüter,et al.  Regulation of growth in the adult cardiomyocytes , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[40]  K. Cho,et al.  Modulation of endocardial natriuretic peptide receptors in right ventricular hypertrophy. , 1999, The American journal of physiology.

[41]  E. Gundelfinger,et al.  Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function , 1999, Cell and Tissue Research.

[42]  L. Potter Phosphorylation-dependent regulation of the guanylyl cyclase-linked natriuretic peptide receptor B: dephosphorylation is a mechanism of desensitization. , 1998, Biochemistry.

[43]  H. S. Kim,et al.  Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Stryer,et al.  Molecular mechanics of calcium–myristoyl switches , 1997, Nature.

[45]  D. Garbers,et al.  Protein kinase C-dependent desensitization of the atrial natriuretic peptide receptor is mediated by dephosphorylation. , 1994, The Journal of biological chemistry.

[46]  M. Kinoshita,et al.  Possibility of downregulation of atrial natriuretic peptide receptor coupled to guanylate cyclase in peripheral vascular beds of patients with chronic severe heart failure. , 1993, Circulation.

[47]  Andrew,et al.  Atrial natriuretic factor in normal subjects and heart failure patients. Plasma levels and renal, hormonal, and hemodynamic responses to peptide infusion. , 1986, The Journal of clinical investigation.