Precision mapping of the human O‐GalNAc glycoproteome through SimpleCell technology

[1]  E. Bennett,et al.  Enhanced Mass Spectrometric Mapping of the Human GalNAc-type O-Glycoproteome with SimpleCells* , 2013, Molecular & Cellular Proteomics.

[2]  Kelly G Ten Hagen,et al.  Mucin-type O-Glycosylation during Development* , 2013, The Journal of Biological Chemistry.

[3]  Henrik Clausen,et al.  Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family. , 2012, Biochimica et biophysica acta.

[4]  André M Deelder,et al.  Protein O-glycosylation analysis , 2012, Biological chemistry.

[5]  Lawrence A Tabak,et al.  Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. , 2012, Glycobiology.

[6]  H. Wandall,et al.  Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells , 2012, Proceedings of the National Academy of Sciences.

[7]  Matthew E Monroe,et al.  Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets , 2012, Proceedings of the National Academy of Sciences.

[8]  K. Medzihradszky,et al.  How to Dig Deeper? Improved Enrichment Methods for Mucin Core-1 Type Glycopeptides* , 2012, Molecular & Cellular Proteomics.

[9]  M. Mann,et al.  Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins* , 2012, Molecular & Cellular Proteomics.

[10]  Jonas Nilsson,et al.  Human Urinary Glycoproteomics; Attachment Site Specific Analysis of N- and O-Linked Glycosylations by CID and ECD* , 2011, Molecular & Cellular Proteomics.

[11]  E. Suzuki,et al.  O-linked-N-acetylglucosamine on extracellular protein domains mediates epithelial cell-matrix interactions. , 2011, Nature communications.

[12]  H. Wandall,et al.  Mining the O-glycoproteome using zinc-finger nuclease–glycoengineered SimpleCell lines , 2011, Nature Methods.

[13]  R. Haltiwanger,et al.  Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. , 2011, Current opinion in structural biology.

[14]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[15]  S. Brunak,et al.  A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing* , 2011, The Journal of Biological Chemistry.

[16]  K. Blennow,et al.  Site-specific characterization of threonine, serine, and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid , 2011, Proceedings of the National Academy of Sciences.

[17]  Henrik Clausen,et al.  Location, location, location: new insights into O-GalNAc protein glycosylation. , 2011, Trends in cell biology.

[18]  Jeremy C. Collette,et al.  Emerging Paradigms for the Initiation of Mucin-type Protein O-Glycosylation by the Polypeptide GalNAc Transferase Family of Glycosyltransferases* , 2011, The Journal of Biological Chemistry.

[19]  E. Bennett,et al.  O-Glycosylation Modulates Proprotein Convertase Activation of Angiopoietin-like Protein 3 , 2010, The Journal of Biological Chemistry.

[20]  Florian Gnad,et al.  Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints , 2010, Cell.

[21]  C. Hesse,et al.  Enrichment of glycopeptides for glycan structure and attachment site identification , 2009, Nature Methods.

[22]  R. Cummings,et al.  Regulation of protein O-glycosylation by the endoplasmic reticulum–localized molecular chaperone Cosmc , 2008, The Journal of cell biology.

[23]  Robert E. Kearney,et al.  Quantitative Proteomics Analysis of the Secretory Pathway , 2006, Cell.

[24]  R. Bayer,et al.  GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. , 2006, Glycobiology.

[25]  T. Strom,et al.  Polypeptide GalNAc-transferase T3 and Familial Tumoral Calcinosis , 2006, Journal of Biological Chemistry.

[26]  E. Tian,et al.  Expression of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase family is spatially and temporally regulated during Drosophila development. , 2006, Glycobiology.

[27]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[28]  Hyesung Jeon,et al.  Structure and physiologic function of the low-density lipoprotein receptor. , 2005, Annual review of biochemistry.

[29]  S. Brunak,et al.  Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. , 2005, Glycobiology.

[30]  D. Behar,et al.  Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis , 2004, Nature Genetics.

[31]  Lawrence A Tabak,et al.  Expression of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase isoforms in murine tissues determined by real-time PCR: a new view of a large family. , 2003, Glycobiology.

[32]  David E. Gloriam,et al.  There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. , 2003, Biochemical and biophysical research communications.

[33]  R. Cummings,et al.  A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Peter Roepstorff,et al.  Functional Conservation of Subfamilies of Putative UDP-N-acetylgalactosamine:Polypeptide N-Acetylgalactosaminyltransferases inDrosophila, Caenorhabditis elegans, and Mammals , 2002, The Journal of Biological Chemistry.

[35]  J. Peter-Katalinic,et al.  High Density O-Glycosylation on Tandem Repeat Peptide from Secretory MUC1 of T47D Breast Cancer Cells* , 1999, The Journal of Biological Chemistry.

[36]  M. Hollingsworth,et al.  Expression of three UDP-N-acetyl-alpha-D-galactosamine:polypeptide GalNAc N-acetylgalactosaminyltransferases in adenocarcinoma cell lines. , 1997, Cancer research.

[37]  L. Tabak,et al.  Charge distribution of flanking amino acids inhibits O-glycosylation of several single-site acceptors in vivo. , 1997, Glycobiology.

[38]  H. Bakker,et al.  Letter to the Glyco-Forum Identification of conserved amino acid motifs in members of the β1→4-galactosyltransferase gene family , 1997 .

[39]  E. Bennett,et al.  cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine. Polypeptide N-acetylgalactosaminyltransferase, GalNAc-t3. , 1996, The Journal of biological chemistry.

[40]  B. Beutler,et al.  A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity , 1991, The Journal of experimental medicine.

[41]  R. Cummings,et al.  The dysfunctional LDL receptor in a monensin-resistant mutant of Chinese hamster ovary cells lacks selected O-linked oligosaccharides. , 1991, Archives of biochemistry and biophysics.

[42]  N Jentoft,et al.  Why are proteins O-glycosylated? , 1990, Trends in biochemical sciences.

[43]  D. Kingsley,et al.  Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal UDP-GalNAc 4-epimerase deficient mutant , 1986, Cell.

[44]  D. Russell,et al.  Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts. , 1986, The Journal of biological chemistry.

[45]  A. Parodi Synthesis of glycosyl-dolichol derivatives in bakers' yeast and their role in protein glycosylation. , 1977, European journal of biochemistry.

[46]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[47]  E. Bennett,et al.  Glycoengineering of human cell lines using zinc finger nuclease gene targeting: SimpleCells with homogeneous GalNAc O-glycosylation allow isolation of the O-glycoproteome by one-step lectin affinity chromatography. , 2013, Methods in molecular biology.

[48]  N. Seidah The proprotein convertases, 20 years later. , 2011, Methods in molecular biology.

[49]  P. Stanley Golgi glycosylation. , 2011, Cold Spring Harbor Perspectives in Biology.

[50]  Gerald W. Hart,et al.  The O-GlcNAc Modification , 2009 .

[51]  Lawrence A Tabak,et al.  All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. , 2003, Glycobiology.

[52]  M. Hollingsworth,et al.  Functional Conservation of Subfamilies of Putative UDP-N-acetylgalactosamine:Polypeptide N-Acetylgalactosaminyltransferases in Drosophila, Caenorhabditis elegans, and Mammals ONE SUBFAMILY COMPOSED OF l(2)35Aa IS ESSENTIAL IN DROSOPHILA* , 2002 .

[53]  M. Jakobsen,et al.  Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family. , 1999, Glycobiology.

[54]  E. Berger,et al.  Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. , 1998, Journal of cell science.