The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European forests

Abstract. Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a “SQLite” relational database or “ASCII” flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R-project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.

Martin Gutsch | Klara Dolos | Hans Pretzsch | Florian Hartig | Hyungjun Kim | Stefan Fleck | Markus Wagner | Giorgio Matteucci | Carlo Trotta | Delphine Picart | Klaus Wiese | Denis Loustau | Flurin Babst | Alicia Palacios-Orueta | Henning Meesenburg | Thomas Rötzer | Kim Pilegaard | Victor Cicuendez | Ivan Mammarella | Hanqin Tian | Timo Vesala | Laura Recuero | Alexander Chikalanov | Jukka Pumpanen | Tanja G. M. Sanders | Justin Sheffield | Annikki Mäkelä | Michael Dietze | Massimo Vieno | Jean-Marc Bonnefond | Joanna A. Horemans | Jan Volkholz | Felicitas Suckow | Ramiro Silveyra Gonzalez | Jörg Steinkamp | Katja Frieler | Andreas Bolte | Friedrich Bohn | Stefan Lange | Andreas Ibrom | Pasi Kolari | Jan Krejza | Lenka Foltýnová | A. Mäkelä | H. Tian | I. Mammarella | T. Vesala | P. Berbigier | A. Ibrom | K. Frieler | M. Büchner | J. Volkholz | S. Fleck | G. Matteucci | J. Sheffield | K. Pilegaard | P. Kolari | F. Hartig | T. Sanders | F. Babst | Alicia Palacios-Orueta | M. Dietze | S. Lafont | Hyungjun Kim | Klara Dološ | J. Bonnefond | A. Bolte | G. Weedon | D. Cameron | D. Loustau | J. Krejza | H. Pretzsch | T. Rötzer | C. Trotta | J. Pumpanen | J. Horemans | P. Lasch-Born | C. Reyer | F. Suckow | M. Wagner | D. Picart | Alessio Collalti | J. Steinkamp | M. Vieno | E. D’Andrea | S. Lange | F. Bohn | Paul Berbigier | Graham P. Weedon | M. Gutsch | Y. Hauf | H. Meesenburg | Sébastien Lafont | Matthias Büchner | Lenka Foltýnová | R. S. Gonzalez | Matthias Noack | Víctor Cicuéndez | L. Recuero | K. Wiese | A. Chikalanov | Iliusi Vega del Valle | S. Martel | Mats Mahnken | Petra Lasch-Born | David Cameron | Christopher P. O. Reyer | Ylva Hauf | Matthias Noack | Alessio Collalti | Ettore D’Andrea | Simon Martel | Mats Mahnken | Klara Dolos | Ylva Hauf | A. Palacios-Orueta | R. S. González

[1]  A. Mäkelä,et al.  The PROFOUND database for evaluating vegetation models and simulating climate impacts on forests , 2019 .

[2]  G. Matteucci,et al.  Winter's bite: Beech trees survive complete defoliation due to spring late-frost damage by mobilizing old C reserves. , 2019, The New phytologist.

[3]  P. Ciais,et al.  The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change , 2019, Ecological applications : a publication of the Ecological Society of America.

[4]  Carsten F. Dormann,et al.  An R package facilitating sensitivity analysis, calibration and forward simulations with the LPJ-GUESS dynamic vegetation model , 2019, Environ. Model. Softw..

[5]  Fleck,et al.  The PROFOUND database for evaluating vegetation models and simulating climate impacts on forests. V.0.1.12 , 2019 .

[6]  Forrest M. Hoffman,et al.  The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation , 2018, Journal of Advances in Modeling Earth Systems.

[7]  A. Ibrom,et al.  Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate , 2018, Journal of advances in modeling earth systems.

[8]  I. Štefančík Growth characteristics of oak (Quercus petraea [Mattusch.] Liebl.) stand under different thinning regimes. , 2018 .

[9]  Michael C Dietze,et al.  Prediction in ecology: a first-principles framework. , 2017, Ecological applications : a publication of the Ecological Society of America.

[10]  S. Lange Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset , 2017 .

[11]  Philippe Ciais,et al.  Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies , 2017 .

[12]  S. Fleck,et al.  Impact of stoniness correction of soil hydraulic parameters on water balance simulations of forest plots , 2017 .

[13]  Philippe Ciais,et al.  Benchmarking carbon fluxes of the ISIMIP2a biome models , 2017 .

[14]  Tyler D. Eddy,et al.  Assessing the impacts of 1.5 °C global warming - simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) , 2016 .

[15]  The Level II aggregated forest soil condition database links soil physicochemical and hydraulic properties with long-term observations of forest condition in Europe , 2016, Annals of Forest Science.

[16]  Stefan Fleck,et al.  Long-term changes of ecosystem services at Solling, Germany: Recovery from acidification, but increasing nitrogen saturation? , 2016 .

[17]  J. Canadell,et al.  Greening of the Earth and its drivers , 2016 .

[18]  Sergio Marconi,et al.  Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites , 2016 .

[19]  V. Banos,et al.  La démarche prospective au service d’un développement forestier intégré. Une étude de cas sur le massif des Landes de Gascogne , 2016 .

[20]  Hans Pretzsch,et al.  Representation of species mixing in forest growth models. A review and perspective , 2015 .

[21]  Ensemble simulations for the RCP8.5-Scenario , 2015 .

[22]  C. Reyer Forest Productivity Under Environmental Change—a Review of Stand-Scale Modeling Studies , 2015, Current Forestry Reports.

[23]  Ranga B. Myneni,et al.  Recent trends and drivers of regional sources and sinks of carbon dioxide , 2015 .

[24]  Steven W. Running,et al.  User's Guide Daily GPP and Annual NPP (MOD17A2/A3) Products NASA Earth Observing System MODIS Land Algorithm , 2015 .

[25]  Ensemble simulations for the RCP 8 . 5-Scenario , 2015 .

[26]  Sylvain Delzon,et al.  Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? , 2014, Journal of environmental management.

[27]  G. Balsamo,et al.  The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA‐Interim reanalysis data , 2014 .

[28]  Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism , 2014, Trees.

[29]  E. Nikinmaa,et al.  Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. , 2014, The New phytologist.

[30]  W. Post,et al.  The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design , 2013 .

[31]  F. Piontek,et al.  The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework , 2013, Proceedings of the National Academy of Sciences.

[32]  H. Pretzsch,et al.  Modelling the impact of climate change on the productivity and water-use efficiency of a central European beech forest , 2013 .

[33]  K. Larsen,et al.  Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest , 2013 .

[34]  Rob Kooper,et al.  On improving the communication between models and data. , 2013, Plant, cell & environment.

[35]  Béatrice Josse,et al.  Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes , 2013 .

[36]  F. Piontek,et al.  A trend-preserving bias correction – the ISI-MIP approach , 2013 .

[37]  Arain,et al.  Use of change-point detection for friction–velocity threshold evaluation in eddy-covariance studies , 2013 .

[38]  S. Dondeyne,et al.  World Reference Base for Soil Resources , 2013 .

[39]  P. S. Duncker,et al.  Classification of forest management approaches: a new conceptual framework and its applicability to European forestry , 2012 .

[40]  Markus Reichstein,et al.  On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning , 2012 .

[41]  S. Higgins,et al.  Connecting dynamic vegetation models to data – an inverse perspective , 2012 .

[42]  Susan L. Ustin,et al.  Derivation of phenological metrics by function fitting to time-series of Spectral Shape Indexes AS1 and AS2: Mapping cotton phenological stages using MODIS time series , 2012 .

[43]  Marc Simard,et al.  A comprehensive benchmarking system for evaluating global vegetation models , 2012 .

[44]  M. Gauß,et al.  The EMEP MSC-W chemical transport model -- technical description , 2012 .

[45]  J. Lamarque,et al.  The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics , 2012 .

[46]  Steven F Railsback,et al.  Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  Rainer Matyseek Growth and defence in plants : resource allocation at multiple scales , 2012 .

[48]  Rainer Matyssek,et al.  Growth and Defence in Plants , 2012, Ecological Studies.

[49]  C. Reyer,et al.  Management of mixed oak-pine forests under climate scenario uncertainty. , 2011 .

[50]  Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany. , 2011, Environmental pollution.

[51]  W. J. Shuttleworth,et al.  Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century , 2011 .

[52]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[53]  Niels Otto Jensen,et al.  Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009 , 2011 .

[54]  G. Nabuurs,et al.  Statistical mapping of tree species over Europe , 2011, European Journal of Forest Research.

[55]  Bruce E. Wilson,et al.  A SOAP Web Service for accessing MODIS land product subsets , 2011, Earth Sci. Informatics.

[56]  H. Hasenauer,et al.  Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC. , 2011, Tree physiology.

[57]  Thomas Rötzer,et al.  Models for supporting forest management in a changing environment , 2011 .

[58]  B. Michalzik,et al.  The importance of canopy-derived dissolved and particulate organic matter (DOM and POM) — comparing throughfall solution from broadleaved and coniferous forests , 2010, Annals of Forest Science.

[59]  J. Yeluripati,et al.  Predicting changes in soil organic carbon in mediterranean and alpine forests during the Kyoto Protocol commitment periods using the CENTURY model , 2010 .

[60]  A. Arneth,et al.  Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation , 2010 .

[61]  P. Hari,et al.  Water balance of a boreal Scots pine forest , 2010 .

[62]  Erkki Lähde,et al.  Silvicultural alternatives in an uneven-sized forest dominated by Picea abies , 2010, Journal of Forest Research.

[63]  Üllar Rannik,et al.  Relative Humidity Effect on the High-Frequency Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance System , 2009 .

[64]  R. Brumme,et al.  Functioning and management of European beech ecosystems , 2009 .

[65]  G. Gravenhorst,et al.  Climatic Condition at Three Beech Forest Sites in Central Germany , 2009 .

[66]  Eero Nikinmaa,et al.  Long-term measurements of the carbon balance of a boreal Scots pine dominated forest ecosystem , 2009 .

[67]  P. Khanna,et al.  Changes in C and N Contents of Soils Under Beech Forests over a Period of 35 Years , 2009 .

[68]  S. Ustin,et al.  Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination , 2007 .

[69]  Manfred J. Lexer,et al.  Multiple-use forest management in consideration of climate change and the interests of stakeholder groups , 2007, European Journal of Forest Research.

[70]  T. Vesala,et al.  Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation , 2006 .

[71]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[72]  S. Hein,et al.  Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in northern France , 2006 .

[73]  J. Schütz Modelling the demographic sustainability of pure beech plenter forests in Eastern Germany , 2006 .

[74]  Pierre Friedlingstein,et al.  Comparing and evaluating process‐based ecosystem model predictions of carbon and water fluxes in major European forest biomes , 2005, Global change biology.

[75]  T. Vesala,et al.  On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm , 2005 .

[76]  Timo Pukkala,et al.  Optimising the management of Pinus sylvestris L. stand under risk of fire in Catalonia (north-east of Spain) , 2005 .

[77]  Philippe Ciais,et al.  Modeling climate change effects on the potential production of French plains forests at the sub-regional level. , 2005, Tree physiology.

[78]  Tiina Markkanen,et al.  Effect of thinning on surface fluxes in a boreal forest , 2005 .

[79]  M. Lindner,et al.  Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany) , 2005 .

[80]  Susan L. Ustin,et al.  Assessment of NDVI and NDWI spectral indices using MODIS time series analysis and development of a new spectral index based on MODIS shortwave infrared bands , 2005 .

[81]  P. Hari,et al.  Estimation of forest–atmosphere CO2 exchange by eddy covariance and profile techniques , 2004 .

[82]  E. Feoli,et al.  Syntaxonomical analysis of beech woods in the Apennines (Italy) using the program package IAHOPA , 2004, Vegetatio.

[83]  D. Loustau,et al.  Variability of stem and branch maintenance respiration in a Pinus pinaster tree. , 2003, Tree physiology.

[84]  Per Ambus,et al.  Field measurements of atmosphere-biosphere interactions in a Danish beech forest , 2003 .

[85]  P. Berbigier,et al.  CO2 and water vapour fluxes for 2 years above Euroflux forest site , 2001 .

[86]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[87]  M. Hanewinkel,et al.  Modelling the conversion from even-aged to uneven-aged stands of Norway spruce (Picea abies L. Karst.) with a distance-dependent growth simulator , 2000 .

[88]  H. J. Schellnhuber,et al.  ‘Earth system’ analysis and the second Copernican revolution , 1999, Nature.

[89]  R. Pape Influence of Thinning and Tree Diameter Class on the Development of Basic Density and Annual Ring Width in Picea abies , 1999 .

[90]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[91]  H. Pretzsch,et al.  Die Fichten-Buchen-Mischbestände des Sonderforschungsbereiches „Wachstum oder Parasitenabwehr?“ im Kranzberger Forst , 1998, Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch.

[92]  D. Loustau,et al.  Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus pinaster. , 1998, Tree physiology.

[93]  A. Cescatti,et al.  Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest , 1998 .

[94]  T. Pukkala,et al.  A spatial yield model for optimizing the thinning regime of mixed stands of Pinus sylvestris and Picea abies , 1998 .

[95]  M. Sykes,et al.  A comparison of forest gap models: Model structure and behaviour , 1996 .

[96]  G. Kerr The effect of heavy or ‘free growth’ thinning on oak (Quercus petraea and Q. robur) , 1996 .

[97]  Aaldrik Tiktak,et al.  Review of sixteen forest-soil-atmosphere models , 1995 .

[98]  H. Sterba Estimating Potential Density from Thinning Experiments and Inventory Data , 1987 .

[99]  Stephen Nortcliff,et al.  Soil properties , 1980, Nature.

[100]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .