Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

[1]  InGaAs nano-photodiode enhanced using polarization-insensitive surface-plasmon antennas , 2011 .

[2]  C. Chang-Hasnain,et al.  GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. , 2011, Nano letters.

[3]  Federico Capasso,et al.  Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. , 2006, Nano letters.

[4]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[5]  M. Teich,et al.  Impact-ionization and noise characteristics of thin III-V avalanche photodiodes , 2001 .

[6]  Bahaa E. A. Saleh,et al.  Effect of dead space on the excess noise factor and time response of avalanche photodiodes , 1990 .

[7]  Charles M Lieber,et al.  Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection , 2006, Nature materials.

[8]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[9]  R. C. Tozer,et al.  Low multiplication noise thin Al/sub 0.6/Ga/sub 0.4/As avalanche photodiodes , 2001 .

[10]  Joe C. Campbell,et al.  Thin multiplication region InAlAs homojunction avalanche photodiodes , 1998 .

[11]  Chee Hing Tan,et al.  Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes , 2001 .

[12]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[13]  Alan C. Farrell,et al.  Reflection spectromicroscopy for the design of nanopillar optical antenna detectors , 2014, 72nd Device Research Conference.

[14]  J.C. Campbell,et al.  Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz , 2001, IEEE Photonics Technology Letters.

[15]  Bahaa E. A. Saleh,et al.  Statistical properties of the impulse response function of double-carrier multiplication avalanche photodiodes including the effect of dead space , 1992 .

[16]  Michael E. Reimer,et al.  Avalanche amplification of a single exciton in a semiconductor nanowire , 2012, Nature Photonics.

[17]  Thomas P. Pearsall,et al.  Impact ionization rates for electrons and holes in Ga0.47In0.53As , 1980 .

[18]  R. B. Emmons,et al.  Avalanche photodiode frequency response , 1967 .

[19]  Alan C. Farrell,et al.  Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors. , 2012, Nano letters.

[20]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .