Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit

Research into episodic memory loss in Alzheimer’s disease has repeatedly focused on the hippocampus. Aggleton et al. argue that this approach is too narrow, and ignores the early involvement of other brain sites, most notably the anterior thalamic nuclei, which are also vital for episodic memory.

[1]  Giulio Pergola,et al.  Thalamic amnesia after infarct: The role of the mammillothalamic tract and mediodorsal nucleus , 2016, Neurology.

[2]  H. Heinsen,et al.  Hierarchical Distribution of the Tau Cytoskeletal Pathology in the Thalamus of Alzheimer's Disease Patients. , 2015, Journal of Alzheimer's disease : JAD.

[3]  Shane M. O’Mara,et al.  Evidence for spatially-responsive neurons in the rostral thalamus , 2015, Front. Behav. Neurosci..

[4]  M. Raichle The brain's default mode network. , 2015, Annual review of neuroscience.

[5]  E. Sullivan,et al.  Thalamic structures and associated cognitive functions: Relations with age and aging , 2015, Neuroscience & Biobehavioral Reviews.

[6]  Seralynne D. Vann,et al.  How do mammillary body inputs contribute to anterior thalamic function? , 2015, Neuroscience & Biobehavioral Reviews.

[7]  J. Aggleton,et al.  eview hy do lesions in the rodent anterior thalamic nuclei cause such evere spatial deficits ? , 2015 .

[8]  J. Hodges,et al.  Lost in spatial translation – A novel tool to objectively assess spatial disorientation in Alzheimer's disease and frontotemporal dementia , 2015, Cortex.

[9]  Hans-Jochen Heinze,et al.  Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling , 2015, eLife.

[10]  Jian-Guo Zhang,et al.  Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer's Disease , 2015, Chinese medical journal.

[11]  Giovanni Giulietti,et al.  Strategic Lesions in the Anterior Thalamic Radiation and Apathy in Early Alzheimer's Disease , 2015, PloS one.

[12]  Frederik Barkhof,et al.  Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to Alzheimer's disease , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[13]  J. Aggleton,et al.  A Critical Role for the Anterior Thalamus in Directing Attention to Task-Relevant Stimuli , 2015, The Journal of Neuroscience.

[14]  G. Ji,et al.  Changes in Thalamic Connectivity in the Early and Late Stages of Amnestic Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Study from ADNI , 2015, PloS one.

[15]  J. Pearce,et al.  The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning , 2015, Front. Behav. Neurosci..

[16]  P. Rosenberg,et al.  The Fornix in Mild Cognitive Impairment and Alzheimer’s Disease , 2015, Front. Aging Neurosci..

[17]  M. Lobo,et al.  Shining light on motivation, emotion, and memory processes , 2015, Front. Behav. Neurosci..

[18]  Hans-Jochen Heinze,et al.  Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation , 2014, eLife.

[19]  P. Nestor,et al.  Diffusion tensor imaging in Alzheimer's disease: insights into the limbic-diencephalic network and methodological considerations , 2014, Front. Aging Neurosci..

[20]  Gang Chen,et al.  Aberrant functional connectivity in Papez circuit correlates with memory performance in cognitively intact middle-aged APOE4 carriers , 2014, Cortex.

[21]  J. Hodges,et al.  Beyond the temporal pole: limbic memory circuit in the semantic variant of primary progressive aphasia. , 2014, Brain : a journal of neurology.

[22]  Tobias Egner,et al.  Thalamic Control of Human Attention Driven by Memory and Learning , 2014, Current Biology.

[23]  H. Amièva,et al.  Compensatory mechanisms in higher-educated subjects with Alzheimer's disease: a study of 20 years of cognitive decline. , 2014, Brain : a journal of neurology.

[24]  Bengt Winblad,et al.  Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer’s disease , 2014, Acta Neuropathologica Communications.

[25]  R. Mayeux,et al.  Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease , 2013, Nature Neuroscience.

[26]  N. Chen,et al.  High‐frequency stimulation of anterior nucleus thalamus improves impaired cognitive function induced by intra‐hippocampal injection of A&bgr;1–40 in rats , 2014, Chinese medical journal.

[27]  Richard C Saunders,et al.  The origin of projections from the posterior cingulate and retrosplenial cortices to the anterior, medial dorsal and laterodorsal thalamic nuclei of macaque monkeys , 2013, The European journal of neuroscience.

[28]  J. T. Erichsen,et al.  Segregation of parallel inputs to the anteromedial and anteroventral thalamic nuclei of the rat , 2013, The Journal of comparative neurology.

[29]  Yong Liu,et al.  Impaired functional connectivity of the thalamus in Alzheimer's disease and mild cognitive impairment: a resting-state fMRI study. , 2013, Current Alzheimer research.

[30]  B. Bontempi,et al.  Reduced cytochrome oxidase activity in the retrosplenial cortex after lesions to the anterior thalamic nuclei , 2013, Behavioural Brain Research.

[31]  Seralynne D Vann,et al.  Dismantling the Papez circuit for memory in rats , 2013, eLife.

[32]  J. Hodges,et al.  Neural substrates of episodic memory dysfunction in behavioural variant frontotemporal dementia with and without C9ORF72 expansions☆ , 2013, NeuroImage: Clinical.

[33]  Judy A. Prasad,et al.  Viral Tracing Identifies Parallel Disynaptic Pathways to the Hippocampus , 2013, The Journal of Neuroscience.

[34]  H. Tanila,et al.  Increased cortical and thalamic excitability in freely moving APPswe/PS1dE9 mice modeling epileptic activity associated with Alzheimer's disease. , 2013, Cerebral cortex.

[35]  Nick C Fox,et al.  Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease , 2013, Brain : a journal of neurology.

[36]  Wei Xu,et al.  A Neural Circuit for Memory Specificity and Generalization , 2013, Science.

[37]  Lisa M. Saksida,et al.  A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer's disease , 2013, Neurobiology of Aging.

[38]  J. Dukart,et al.  Dissociating Memory Networks in Early Alzheimer’s Disease and Frontotemporal Lobar Degeneration - A Combined Study of Hypometabolism and Atrophy , 2013, PloS one.

[39]  J. Hodges,et al.  Retrosplenial Cortex (BA 29) Volumes in Behavioral Variant Frontotemporal Dementia and Alzheimer’s Disease , 2013, Dementia and Geriatric Cognitive Disorders.

[40]  C. Jack,et al.  Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers , 2013, The Lancet Neurology.

[41]  Shannon L Risacher,et al.  Altered default mode network connectivity in older adults with cognitive complaints and amnestic mild cognitive impairment. , 2013, Journal of Alzheimer's disease : JAD.

[42]  Anderson M. Winkler,et al.  Default mode network activity and white matter integrity in healthy middle-aged ApoE4 carriers , 2012, Brain Imaging and Behavior.

[43]  J. Aggleton,et al.  The medial dorsal thalamic nucleus and the medial prefrontal cortex of the rat function together to support associative recognition and recency but not item recognition , 2012, Learning & memory.

[44]  Derek K. Jones,et al.  Temporal association tracts and the breakdown of episodic memory in mild cognitive impairment , 2012, Neurology.

[45]  Harald Hampel,et al.  Reduced Hippocampal Volume in Healthy Young ApoE4 Carriers: An MRI Study , 2012, PloS one.

[46]  Julie R. Dumont,et al.  Anterior thalamic nuclei lesions in rats disrupt markers of neural plasticity in distal limbic brain regions , 2012, Neuroscience.

[47]  P. Thompson,et al.  Regional brain volume differences in symptomatic and presymptomatic carriers of familial Alzheimer's disease mutations , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[48]  Michael Hornberger,et al.  In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer's disease. , 2012, Brain : a journal of neurology.

[49]  Fernando Cendes,et al.  Volumetric Brain Changes in Thalamus, Corpus Callosum and Medial Temporal Structures: Mild Alzheimer’s Disease Compared with Amnestic Mild Cognitive Impairment , 2012, Dementia and Geriatric Cognitive Disorders.

[50]  Andreea Oliviana Diaconescu,et al.  Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. , 2012, Archives of neurology.

[51]  N. Schuff,et al.  White Matter Alterations in Cognitively Normal apoE ɛ2 Carriers: Insight into Alzheimer Resistance? , 2012, American Journal of Neuroradiology.

[52]  J. Aggleton Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function , 2012, Neuroscience & Biobehavioral Reviews.

[53]  I. Reinvang,et al.  Executive Dysfunction in MCI: Subtype or Early Symptom , 2012, International journal of Alzheimer's disease.

[54]  B. Winblad,et al.  Amyloid neuropathology in the single Arctic APP transgenic model affects interconnected brain regions , 2012, Neurobiology of Aging.

[55]  C. Jack,et al.  Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics , 2012, Brain : a journal of neurology.

[56]  Nick C Fox,et al.  Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features , 2012, Alzheimer's & Dementia.

[57]  Kuncheng Li,et al.  Changes in thalamus connectivity in mild cognitive impairment: evidence from resting state fMRI. , 2012, European journal of radiology.

[58]  G. Winocur,et al.  Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone , 2011, Experimental Neurology.

[59]  R. J. McDonald,et al.  Revisiting the cholinergic hypothesis in the development of Alzheimer's disease , 2011, Neuroscience & Biobehavioral Reviews.

[60]  Keith A. Johnson,et al.  Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden , 2011, Alzheimer's & Dementia.

[61]  C. Caltagirone,et al.  Vascular thalamic amnesia: A reappraisal , 2011, Neuropsychologia.

[62]  David T. Jones,et al.  Default mode network disruption secondary to a lesion in the anterior thalamus. , 2011, Archives of neurology.

[63]  J. Aggleton,et al.  Early-onset dysfunction of retrosplenial cortex precedes overt amyloid plaque formation in Tg2576 mice , 2011, Neuroscience.

[64]  V. Calhoun,et al.  Default mode network connectivity in stable vs progressive mild cognitive impairment , 2011, Neurology.

[65]  G. Castellano,et al.  MR Imaging Texture Analysis of the Corpus Callosum and Thalamus in Amnestic Mild Cognitive Impairment and Mild Alzheimer Disease , 2010, American Journal of Neuroradiology.

[66]  Nick C Fox,et al.  Carbon-11-Pittsburgh compound B positron emission tomography imaging of amyloid deposition in presenilin 1 mutation carriers. , 2011, Brain : a journal of neurology.

[67]  Clement Hamani,et al.  Neurogenic hippocampal targets of deep brain stimulation , 2011, The Journal of comparative neurology.

[68]  Nick C Fox,et al.  Revising the definition of Alzheimer's disease: a new lexicon , 2010, The Lancet Neurology.

[69]  R. Wennberg,et al.  A phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease , 2010, Annals of neurology.

[70]  S. Belleville Working memory and control of attention in persons with Alzheimer's disease and mild cognitive impairment , 2010, Alzheimer's & Dementia.

[71]  J. Wesson Ashford,et al.  Apolipoprotein E ɛ4 influences on episodic recall and brain structures in aging pilots , 2010, Neurobiology of Aging.

[72]  Julie R. Dumont,et al.  Fornix and retrosplenial contribution to a hippocampo-thalamic circuit underlying conditional learning , 2010, Behavioural Brain Research.

[73]  J. Hodges,et al.  Focal posterior cingulate atrophy in incipient Alzheimer's disease , 2010, Neurobiology of Aging.

[74]  Kelly O'Keefe,et al.  Evidence of Altered Posteromedial Cortical fMRI Activity in Subjects at Risk for Alzheimer Disease , 2010, Alzheimer disease and associated disorders.

[75]  Mark Jenkinson,et al.  Combining shape and connectivity analysis: An MRI study of thalamic degeneration in Alzheimer's disease , 2010, NeuroImage.

[76]  E. Maguire,et al.  What does the retrosplenial cortex do? , 2009, Nature Reviews Neuroscience.

[77]  J. Aggleton,et al.  Anterior thalamic lesions stop synaptic plasticity in retrosplenial cortex slices: expanding the pathology of diencephalic amnesia. , 2009, Brain : a journal of neurology.

[78]  G. Frisoni,et al.  In vivo mapping of amyloid toxicity in Alzheimer disease , 2009, Neurology.

[79]  I. Veer,et al.  Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study , 2008, Brain : a journal of neurology.

[80]  Jeffrey A. James,et al.  Frequent amyloid deposition without significant cognitive impairment among the elderly. , 2008, Archives of neurology.

[81]  Daniela Montaldi,et al.  A disproportionate role for the fornix and mammillary bodies in recall versus recognition memory , 2008, Nature Neuroscience.

[82]  Lippincott Williams Wilkins,et al.  THERMOREGULATION: RECENT CONCEPTS AND REMAINING QUESTIONS , 2008, Neurology.

[83]  J. Aggleton,et al.  Anterior thalamic lesions produce chronic and profuse transcriptional de-regulation in retrosplenial cortex: A model of retrosplenial hypoactivity and covert pathology. , 2008, Thalamus & related systems.

[84]  Nastaran Gharkholonarehe,et al.  Progression of Amyloid Pathology to Alzheimer's Disease Pathology in an Amyloid Precursor Protein Transgenic Mouse Model by Removal of Nitric Oxide Synthase 2 , 2008, The Journal of Neuroscience.

[85]  A. Lozano,et al.  The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. , 2008, Journal of neurosurgery.

[86]  V. Calhoun,et al.  Selective changes of resting-state networks in individuals at risk for Alzheimer's disease , 2007, Proceedings of the National Academy of Sciences.

[87]  Rachel A. Diana,et al.  Imaging recollection and familiarity in the medial temporal lobe: a three-component model , 2007, Trends in Cognitive Sciences.

[88]  R. Saunders,et al.  Distinct, parallel pathways link the medial mammillary bodies to the anterior thalamus in macaque monkeys , 2007, The European journal of neuroscience.

[89]  J. Aggleton,et al.  Hippocampal lesions halve immediate–early gene protein counts in retrosplenial cortex: distal dysfunctions in a spatial memory system , 2007, The European journal of neuroscience.

[90]  Benjamin Zahneisen,et al.  Gradient‐echo and CRAZED imaging for minute detection of Alzheimer plaques in an APPV717I × ADAM10‐dn mouse model , 2007, Magnetic resonance in medicine.

[91]  S. Becker,et al.  Remembering the past and imagining the future: a neural model of spatial memory and imagery. , 2007, Psychological review.

[92]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[93]  M. W. Brown,et al.  Changes in immediate early gene expression in the rat brain after unilateral lesions of the hippocampus , 2006, Neuroscience.

[94]  R. Swartz,et al.  Anterior-medial thalamic lesions in dementia: frequent, and volume dependently associated with sudden cognitive decline , 2006, Journal of Neurology, Neurosurgery & Psychiatry.

[95]  Tim D. Fryer,et al.  Declarative memory impairments in Alzheimer's disease and semantic dementia , 2006, NeuroImage.

[96]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[97]  Brigitte Landeau,et al.  Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: A longitudinal MRI study , 2005, NeuroImage.

[98]  Kuncheng Li,et al.  Visual attention deficits in Alzheimer's disease: an fMRI study , 2005, Neuroscience Letters.

[99]  Benjamin J. Shannon,et al.  Molecular, Structural, and Functional Characterization of Alzheimer's Disease: Evidence for a Relationship between Default Activity, Amyloid, and Memory , 2005, The Journal of Neuroscience.

[100]  Zuzana Walker,et al.  The functional anatomy of divided attention in amnestic mild cognitive impairment. , 2005, Brain : a journal of neurology.

[101]  Michael Petrides,et al.  Spatial conditional associative learning: effects of thalamo-hippocampal disconnection in rats , 2004, Neuroreport.

[102]  R. Petersen Mild cognitive impairment as a diagnostic entity , 2004, Journal of internal medicine.

[103]  R. Clark,et al.  The medial temporal lobe. , 2004, Annual review of neuroscience.

[104]  J. Aggleton,et al.  Anterior thalamic lesions stop immediate early gene activation in selective laminae of the retrosplenial cortex: evidence of covert pathology in rats? , 2004, The European journal of neuroscience.

[105]  H. Braak,et al.  Alzheimer's disease affects limbic nuclei of the thalamus , 2004, Acta Neuropathologica.

[106]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[107]  K. Taber,et al.  The limbic thalamus. , 2004, The Journal of neuropsychiatry and clinical neurosciences.

[108]  M. Witter,et al.  Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions , 2003, Neuropsychologia.

[109]  J R Hodges,et al.  Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease) , 2003, The European journal of neuroscience.

[110]  M. L. Lambon Ralph,et al.  Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer's disease: a cross-sectional and longitudinal study of 55 cases. , 2003, Brain : a journal of neurology.

[111]  J. Hodges,et al.  Limbic hypometabolism in Alzheimer's disease and mild cognitive impairment , 2003, Annals of neurology.

[112]  John R Hodges,et al.  Dissociation between top‐down attentional control and the time course of visual attention as measured by attentional dwell time in patients with mild cognitive impairment , 2003, The European journal of neuroscience.

[113]  J. Aggleton,et al.  Evidence of a Spatial Encoding Deficit in Rats with Lesions of the Mammillary Bodies or Mammillothalamic Tract , 2003, The Journal of Neuroscience.

[114]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[115]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[116]  H. Barbas,et al.  Pathways for emotions and memory: II. Afferent input to the anterior thalamic nuclei from prefrontal, temporal, hypothalamic areas and the basal ganglia in the rhesus monkey , 2002 .

[117]  H. Barbas,et al.  Pathways for emotions and memory: I. Input and output zones linking the anterior thalamic nuclei with prefrontal cortices in the rhesus monkey , 2002 .

[118]  John P Aggleton,et al.  Fos Imaging Reveals that Lesions of the Anterior Thalamic Nuclei Produce Widespread Limbic Hypoactivity in Rats , 2002, The Journal of Neuroscience.

[119]  Nick C Fox,et al.  Mapping the evolution of regional atrophy in Alzheimer's disease: Unbiased analysis of fluid-registered serial MRI , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[120]  D. Xiaob,et al.  Pathways for emotions and memory II . Afferent input to the anterior thalamic nuclei from prefrontal , temporal , hypothalamic areas and the basal ganglia in the rhesus monkey , 2002 .

[121]  J. Pearce,et al.  Neural systems underlying episodic memory: insights from animal research. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[122]  John P. Aggleton,et al.  The Conjoint Importance of the Hippocampus and Anterior Thalamic Nuclei for Allocentric Spatial Learning: Evidence from a Disconnection Study in the Rat , 2001, The Journal of Neuroscience.

[123]  E. Maguire The retrosplenial contribution to human navigation: a review of lesion and neuroimaging findings. , 2001, Scandinavian journal of psychology.

[124]  Matthew F. S. Rushworth,et al.  Attention systems and the organization of the human parietal cortex , 2001, NeuroImage.

[125]  J R Hodges,et al.  Heterogeneity of semantic and visuospatial deficits in early Alzheimer's disease. , 2001, Neuropsychology.

[126]  E A Maguire,et al.  Hippocampal Amnesia , 2001, Neurocase.

[127]  J. Hodges,et al.  The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: relationship to episodic and semantic memory impairment , 2000, Neuropsychologia.

[128]  J. Kril,et al.  Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. , 2000, Brain : a journal of neurology.

[129]  M Petrides,et al.  Architecture and connections of retrosplenial area 30 in the rhesus monkey (macaca mulatta). , 1999, The European journal of neuroscience.

[130]  M. W. Brown,et al.  Episodic memory, amnesia, and the hippocampal–anterior thalamic axis , 1999, Behavioral and Brain Sciences.

[131]  J. Hodges,et al.  Attention and executive deficits in Alzheimer's disease. A critical review. , 1999, Brain : a journal of neurology.

[132]  Brent A. Vogt,et al.  Atypical form of Alzheimer's disease with prominent posterior cortical atrophy: A review of lesion distribution and circuit disconnection in cortical visual pathways , 1997, Vision Research.

[133]  Amanda Parker,et al.  The effect of anterior thalamic and cingulate cortex lesions on object-in-place memory in monkeys , 1997, Neuropsychologia.

[134]  N. Foster,et al.  Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease , 1997, Annals of neurology.

[135]  S. Younkin,et al.  Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice , 1996, Science.

[136]  T. Robbins,et al.  Dissociation in prefrontal cortex of affective and attentional shifts , 1996, Nature.

[137]  Terri Gullickson,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook. , 1995 .

[138]  J. Aggleton,et al.  Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat , 1994, Behavioural Brain Research.

[139]  J. Price,et al.  The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[140]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[141]  M. Gabriel,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook , 1993 .

[142]  R. Sutherland,et al.  Posterior Cingulate Cortex and Spatial Memory: A Microlimnology Analysis , 1993 .

[143]  M. Gabriel,et al.  Neurobiology of Cingulate Cortex and Limbic Thalamus , 1993 .

[144]  B. Vogt,et al.  Interconnections Between the Thalamus and Retrosplenial Cortex in the Rodent Brain , 1993 .

[145]  T. Robbins,et al.  Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man , 1991, Neuropsychologia.

[146]  E K Perry,et al.  Nerve cell loss in the thalamus in Alzheimer's disease and Parkinson's disease. , 1991, Brain : a journal of neurology.

[147]  Ranjan Duara,et al.  Frontal hypermetabolism and thalamic hypometabolism in a patient with abnormal orienting and retrosplenial amnesia , 1990, Neuropsychologia.

[148]  A. R. Damasio,et al.  Memory‐related neural systems in Alzheimer's disease , 1990, Neurology.

[149]  T. Powell,et al.  The Neuroanatomy of Alzheimer's Disease , 1989, Reviews in the neurosciences.

[150]  D L Rosene,et al.  Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents , 1987, The Journal of comparative neurology.

[151]  M Mishkin,et al.  The origin, course, and termination of the hippocampothalamic projections in the macaque , 1986, The Journal of comparative neurology.

[152]  D. Pandya,et al.  Some observations on the course and composition of the cingulum bundle in the rhesus monkey , 1984, The Journal of comparative neurology.

[153]  J. DeVito,et al.  Subcortical projections to the hippocampal formation in squirrel monkey (Saimiri sciureus) , 1980, Brain Research Bulletin.

[154]  W M Cowan,et al.  Subcortical afferents to the hippocampal formation in the monkey , 1980, The Journal of comparative neurology.

[155]  C E Poletti,et al.  Fornix system efferent projections in the squirrel monkey: An experimental degeneration study , 1977, The Journal of comparative neurology.

[156]  F. Vogel,et al.  The limbic system in Alzheimer's disease. A neuropathologic investigation. , 1976, The American journal of pathology.

[157]  Jean Delay,et al.  Le Syndrome de Korsakoff , 1969 .

[158]  B. Milner,et al.  Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M.☆ , 1968 .

[159]  V. J. Polidora Behavioral Effects of , 1967 .