Gaia calibrated UV luminous stars in LAMOST

We take advantage of the Gaia data release 2 to present 275 and 1,774 ultraviolet luminous stars in the FUV and the NUV. These stars are 5$\sigma$ exceeding the centers of the reference frame that is built with over one million UV stars in the log $g$ vs $T_\textrm{eff}$ diagram. The Galactic extinction is corrected with the 3D dusty map. In order to limit the Lutz-Kelker effect to an insignificant level, we select the stars with the relative uncertainties of the luminosity less than 40% and the trigonometric parallaxes less than 20%. We cross-identified our sample with the catalogs of RR Lyr stars and possible white dwarf main-sequence binaries, and find they compose $\sim$ 62% and $\sim$ 16% of our sample in the FUV and NUV, respectively. This catalog provides a unique sample to study stellar activity, spectrally unresolved compact main-sequence binaries and variable stars.

[1]  E. L. Robinson,et al.  MULTIWAVELENGTH OBSERVATIONS OF Swift J1753.5−0127 , 2013, 1311.0031.

[2]  Chao Zhai,et al.  The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) , 2012 .

[3]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[4]  Linhua Jiang,et al.  LIGHT CURVE TEMPLATES AND GALACTIC DISTRIBUTION OF RR LYRAE STARS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82 , 2009, 0910.4611.

[5]  J. Linsky,et al.  IUE spectra of a flare in the RS Canum Venaticorum-type system UX Arietis , 1980 .

[6]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[7]  Ansgar Reiners,et al.  Observations of Cool-Star Magnetic Fields , 2012, 1203.0241.

[8]  W. Herbst,et al.  An Ultraviolet and Optical Study of Accreting Pre-Main-Sequence Stars: Uxors , 1995 .

[9]  E. Grebel,et al.  Newly discovered RR Lyrae stars in the SDSS–Pan-STARRS1–Catalina footprint , 2014, 1404.4823.

[10]  David Soderblom,et al.  STELLAR ACTIVITY IN THE BROADBAND ULTRAVIOLET , 2011, 1105.1377.

[11]  A. A. Mahabal,et al.  EVIDENCE FOR A MILKY WAY TIDAL STREAM REACHING BEYOND 100 kpc , 2013, 1301.6168.

[12]  Beijing,et al.  Distance and extinction determination for APOGEE stars with Bayesian method , 2016, 1605.07300.

[13]  J. Winters,et al.  THE SOLAR NEIGHBORHOOD. XXXI. DISCOVERY OF AN UNUSUAL RED+WHITE DWARF BINARY AT ∼25 pc VIA ASTROMETRY AND UV IMAGING , 2013, 1310.4746.

[14]  Y. Bai,et al.  Machine learning classification of Gaia Data Release 2 , 2018, Research in Astronomy and Astrophysics.

[15]  David O. Jones,et al.  A CATALOG OF GALEX ULTRAVIOLET EMISSION FROM SPECTROSCOPICALLY CONFIRMED M DWARFS , 2015, 1509.03645.

[16]  Olivier Bienayme,et al.  New distances to RAVE stars , 2013, 1309.4270.

[17]  W. Ip,et al.  On the Star-Magnetosphere Interaction of Close-in Exoplanets , 2004 .

[18]  T. Iijima,et al.  Spectroscopic observations of the first helium nova V445 Puppis , 2008 .

[19]  F. V. Leeuwen,et al.  Hipparcos, the New Reduction of the Raw Data , 2007 .

[20]  C. Francis The Lutz–Kelker paradox , 2014, 1406.6580.

[21]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[22]  J. Miller,et al.  An X-ray-UV correlation in Cen X-4 during quiescence , 2012, 1210.4510.

[23]  E. Shkolnik AN ULTRAVIOLET INVESTIGATION OF ACTIVITY ON EXOPLANET HOST STARS , 2013, 1301.6192.

[24]  James Binney,et al.  Stellar distances from spectroscopic observations: a new technique , 2010, 1004.4367.

[25]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[26]  Douglas R. Gies,et al.  Detection of the Ultraviolet Spectrum of the Hot Subdwarf Companion of 60 Cygni (B1 Ve) from a Survey of IUE Spectra of Be Stars , 2017, 1705.07165.

[27]  E. L. Robinson,et al.  THE ULTRAVIOLET SPECTRAL ENERGY DISTRIBUTIONS OF QUIESCENT BLACK HOLES AND NEUTRON STARS , 2012, 1201.5680.

[28]  Haibo Yuan,et al.  Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands , 2013, 1301.1427.

[29]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[30]  Nicholas J. Wright,et al.  THE STELLAR-ACTIVITY–ROTATION RELATIONSHIP AND THE EVOLUTION OF STELLAR DYNAMOS , 2011, 1109.4634.

[31]  P. Szkody,et al.  HST/STIS spectroscopy of the exposed white dwarf in the short-period dwarf nova EK TrA , 2001, astro-ph/0106023.

[32]  Henk Smith Is there really a Lutz—Kelker bias? Reconsidering calibration with trigonometric parallaxes , 2003 .

[33]  Y. Bai,et al.  The UV Emission of Stars in the LAMOST Survey. I. Catalogs , 2018, 1802.00537.

[34]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[35]  B. Welsh,et al.  RR Lyrae Variables in the Ultraviolet: The View from GALEX , 2012 .

[36]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[37]  Eugene Magnier,et al.  A THREE-DIMENSIONAL MAP OF MILKY WAY DUST , 2015, 1507.01005.

[38]  Yanchun Liang,et al.  Automatic determination of stellar atmospheric parameters and construction of stellar spectral templates of the Guoshoujing Telescope (LAMOST) , 2011, 1105.2681.

[39]  C. Fabricius,et al.  Gaia broad band photometry , 2010, 1008.0815.

[40]  Allan Sandage,et al.  Comparison of Hipparcos Trigonometric and Mount Wilson Spectroscopic Parallaxes for 90 Subgiants that Defined the Class in 1935 , 2015, 1511.05930.

[41]  X. Fang,et al.  The Flaring Activity of M Dwarfs in the Kepler Field , 2017 .

[42]  Thomas E. Lutz,et al.  ON THE USE OF TRIGONOMETRIC PARALLAXES FOR THE CALIBRATION OF LUMINOSITY SYSTEMS: THEORY , 1973 .

[43]  B. Gänsicke,et al.  EK TrA, a close relative of VW Hyi , 1997 .