Review of the anatase to rutile phase transformation

Titanium dioxide, TiO2, is an important photocatalytic material that exists as two main polymorphs, anatase and rutile. The presence of either or both of these phases impacts on the photocatalytic performance of the material. The present work reviews the anatase to rutile phase transformation. The synthesis and properties of anatase and rutile are examined, followed by a discussion of the thermodynamics of the phase transformation and the factors affecting its observation. A comprehensive analysis of the reported effects of dopants on the anatase to rutile phase transformation and the mechanisms by which these effects are brought about is presented in this review, yielding a plot of the cationic radius versus the valence characterised by a distinct boundary between inhibitors and promoters of the phase transformation. Further, the likely effects of dopant elements, including those for which experimental data are unavailable, on the phase transformation are deduced and presented on the basis of this analysis.

[1]  O. J. Kleppa,et al.  Transformation Enthalpies of the TiO2 Polymorphs , 1979 .

[2]  V. Teixeira,et al.  Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications , 2007 .

[3]  Sol–Gel Processed Functional Nanosized TiO2 and SiO2-Based Films for Photocatalysts and Other Applications , 2004 .

[4]  Z. Shi,et al.  The phase transformation behaviors of Sn2+-doped Titania gels , 2007 .

[5]  M. Rȩkas,et al.  Defect chemistry and semiconducting properties of titanium dioxide: III. Mobility of electronic charge carriers☆ , 2003 .

[6]  Hua Chang,et al.  Thermo-Raman studies on anatase and rutile , 1998 .

[7]  Yu‐Wen Chen,et al.  Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution , 2003 .

[8]  E. F. Heald,et al.  Kinetics and mechanism of the anatase/rutile transformation, as catalyzed by ferric oxide and reducing conditions , 1972 .

[9]  A. Heller,et al.  Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention , 1997 .

[10]  J. Banfield,et al.  Special phase transformation and crystal growth pathways observed in nanoparticles† , 2003, Geochemical transactions.

[11]  J. S. Lees,et al.  A structural investigation of titanium dioxide photocatalysts , 1991 .

[12]  F. Saito,et al.  Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine , 2003 .

[13]  Yi Hu,et al.  Phase transformation of precipitated TiO2 nanoparticles , 2003 .

[14]  C. Gout,et al.  Electronic band structure of titanium dioxide , 1977 .

[15]  M. Inagaki,et al.  Photoactivity and phase stability of ZrO2-doped anatase-type TiO2 directly formed as nanometer-sized particles by hydrolysis under hydrothermal conditions , 2003 .

[16]  J. Herrmann,et al.  Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants , 1999 .

[17]  Nicholas M. Harrison,et al.  First-principles calculations of the phase stability of TiO2 , 2002 .

[18]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[19]  Guangshe Li,et al.  Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability , 2009 .

[20]  J. P. Lewis,et al.  Second-generation photocatalytic materials: anion-doped TiO2 , 2005 .

[21]  S. Pillai,et al.  Synthesis of thermally stable, high surface area anatase-alumina mixed oxides , 2000 .

[22]  J. Augustynski The role of the surface intermediates in the photoelectrochemical behaviour of anatase and rutile TiO2 , 1993 .

[23]  Can Li,et al.  Importance of the relationship between surface phases and photocatalytic activity of TiO2. , 2008, Angewandte Chemie.

[24]  P. Gouma,et al.  ANATASE-TO-RUTILE TRANSFORMATION IN TITANIA POWDERS , 2001 .

[25]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[26]  Aaron Wold,et al.  Photocatalytic properties of titanium dioxide (TiO2) , 1993 .

[27]  I. Parkin,et al.  Characterisation of the photocatalyst Pilkington Activ (TM): a reference film photocatalyst? , 2003 .

[28]  L. Scheideler,et al.  Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. , 2006, Journal of biomedical materials research. Part A.

[29]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[30]  M. Morris,et al.  Preparation of a highly thermally stable titania anatase phase by addition of mixed zirconia and silica dopants , 2006 .

[31]  Qiang Zhang,et al.  Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis , 2000 .

[32]  G. I. Rusu,et al.  On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films , 2000 .

[33]  Wojciech Macyk,et al.  Visible light inactivation of bacteria and fungi by modified titanium dioxide , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[34]  L. Qi,et al.  Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles , 1995 .

[35]  Michio Matsumura,et al.  Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases , 2001 .

[36]  Andrea Colombo,et al.  Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A Femtosecond Diffuse Reflectance Investigation of TiO2 Nanoparticles , 1996 .

[37]  M. Matsumura,et al.  Photocatalytic Activities of Pure Rutile Particles Isolated from TiO2 Powder by Dissolving the Anatase Component in HF Solution , 2001 .

[38]  C. Pistorius Phase relations and structures of solids at high pressures , 1976 .

[39]  B. Kear,et al.  Refinement of nanoscale grain structure in bulk titania via a transformation-assisted consolidation (TAC) method , 2004 .

[40]  T. Hahn International tables for crystallography , 2002 .

[41]  J. Schoonman,et al.  Gas-phase synthesis of nanostructured anatase TiO2 , 1998 .

[42]  G. Bond,et al.  The vanadium pentoxide-titanium dioxide system: Structural investigation and activity for the oxidation of butadiene , 1979 .

[43]  Z. Wang,et al.  In-Situ Analysis of Valence Conversion in Transition Metal Oxides Using Electron Energy-Loss Spectroscopy , 1997 .

[44]  S. Yin,et al.  Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution–reprecipitation process , 2004 .

[45]  K. Warrier,et al.  An aqueous sol-gel route to synthesize nanosized lanthana- doped titania having an increased anatase phase stability for photocatalytic application , 2005 .

[46]  O. J. Kleppa,et al.  Enthalpy of the Anatase‐Rutile Transformation , 1967 .

[47]  M. Matsumura,et al.  Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene , 2003 .

[48]  R. Ahuja,et al.  Experimental and theoretical identification of a new high-pressure TiO2 polymorph. , 2001, Physical review letters.

[49]  J. Kiwi,et al.  Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid , 1998 .

[50]  R. L. Pozzo,et al.  Supported titanium oxide as photocatalyst in water decontamination: State of the art , 1997 .

[51]  Zhenguo Yang,et al.  Polymorphic transformation and powder characteristics of TiO2 during high energy milling , 2000 .

[52]  S. Pratsinis,et al.  Dopants in Vapor‐Phase Synthesis of Titania Powders , 1992 .

[53]  R. Arroyo,et al.  Effects of cationic dopants on the phase transition temperature of titania prepared by the sol-gel method , 1999 .

[54]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .

[55]  H. Jung,et al.  Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method , 2005 .

[56]  William E. Mayo,et al.  Transformation-assisted consolidation of bulk nanocrystalline TiO2 , 1999 .

[57]  G. Marcì,et al.  Preparation and characterization of Al2O3 supported TiO2 catalysts employed for 4-nitrophenol photodegradation in aqueous medium , 1998 .

[58]  M. Matsumura,et al.  Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles , 1998 .

[59]  A. Mills,et al.  Photocatalytic oxidation of soot by P25 TiO2 films. , 2006, Chemosphere.

[60]  J. Nowotny,et al.  Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams☆ , 2003 .

[61]  J. Zuo,et al.  GROWTH AND PHASE TRANSFORMATION OF NANOMETER-SIZED TITANIUM OXIDE POWDERS PRODUCED BY THE PRECIPITATION METHOD , 2004 .

[62]  K. Gray,et al.  A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface , 2007 .

[63]  Junying Zhang,et al.  Synthesis of nanosized rutile TiO2 powder at low temperature , 2003 .

[64]  Nobuo Yamamoto,et al.  Effect of Silica Additive on the Anatase‐to‐Rutile Phase Transition , 2004 .

[65]  M. Rȩkas,et al.  Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium , 2003 .

[66]  A. Reller,et al.  Phase transformation and grain growth of doped nanosized titania , 2002 .

[67]  J. Ferreira,et al.  Inhibitory effect of alumina additive on the titania phase transformation of a sol--gel-derived powder , 1997 .

[68]  M. Scurrell,et al.  The effect of gold on the phase transitions of titania , 2005 .

[69]  K. Yanagisawa,et al.  Effect of Hydrothermal Treatment of Amorphous Titania on the Phase Change from Anatase to Rutile during Calcination , 1999 .

[70]  Y. Ein‐Eli,et al.  Enhanced photo-efficiency of immobilized TiO2 catalyst via intense anodic bias , 2007 .

[71]  F. Mizukami,et al.  Microstructure and phase transformation behavior of doped nanostructured titania , 1999 .

[72]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[73]  Yanguang Wang,et al.  The effect of lanthanide on the degradation of RB in nanocrystalline Ln/TiO2 aqueous solution , 2005 .

[74]  Jing Sun,et al.  Synthesizing and Comparing the Photocatalytic Properties of High Surface Area Rutile and Anatase Titania Nanoparticles , 2003 .

[75]  Timothy Hughbanks,et al.  Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K , 1987 .

[76]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[77]  Abdul Halim Abdullah,et al.  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals, progress and problems , 2008 .

[78]  J. Weber,et al.  Preparation of TiO2 nanoparticles by Sol-Gel route , 2003 .

[79]  Arthur J. Frank,et al.  CHARGE RECOMBINATION IN DYE-SENSITIZED NANOCRYSTALLINE TIO2 SOLAR CELLS , 1997 .

[80]  M. Matsumura,et al.  Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles , 2004 .

[81]  C. Serna,et al.  Low-temperature nucleation of rutile observed by Raman spectroscopy during crystallization of TiO2 , 1992 .

[82]  P. Smirniotis,et al.  Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation , 2003 .

[83]  Jackie Y. Ying,et al.  Sol−Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals , 1999 .

[84]  Erik M. Kelder,et al.  Electrostatic sol-spray deposition (ESSD) and characterisation of nanostructured TiO2 thin films , 1999 .

[85]  Liping Li,et al.  High purity anatase TiO(2) nanocrystals: near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. , 2005, Journal of the American Chemical Society.

[86]  K. K. Saini,et al.  Sol-gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst , 2006 .

[87]  K. Hadjiivanov,et al.  Surface chemistry of titania (anatase) and titania-supported catalysts , 1996 .

[88]  K. Koumoto,et al.  Inhibition mechanism of the anatase-rutile phase transformation by rare earth oxides , 1983 .

[89]  Pelagia-Irene Gouma,et al.  Sensing of Organic Vapors by Flame-Made TiO2 Nanoparticles , 2006 .

[90]  M. S. Hegde,et al.  Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[91]  D. Pasquevich,et al.  Effect of chlorine atmosphere on the anatase-rutile transformation , 1992 .

[92]  T. B. Ghosh,et al.  On crystallite size dependence of phase stability of nanocrystalline TiO2 , 2003 .

[93]  R. Roy,et al.  Pressure-temperature studies of anatase, brookite, rutile and TiO2(II): A reply , 1968 .

[94]  A. Zaban,et al.  Nanosize rutile titania particle synthesis viaa hydrothermal method without mineralizers , 2000 .

[95]  S. Karvinen,et al.  The effects of trace elements on the crystal properties of TiO2 , 2003 .

[96]  K. Heo,et al.  The effects of manganese ions and their magnetic properties on the anatase-rutile phase transition of nanocrystalline TiO2:Mn prepared by using the solvothermal method , 2005 .

[97]  Juan-Yu Yang,et al.  Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase–rutile phase transformation , 1998 .

[98]  K. Kawano,et al.  Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO2 , 2008 .

[99]  Jordi Arbiol,et al.  Effects of Nb doping on the TiO2 anatase-to-rutile phase transition , 2002 .

[100]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[101]  H. Okamoto,et al.  The Al−Au (Aluminum-gold) system , 1987 .

[102]  X. Liu,et al.  Grain size dependence of anatase-to-rutile structural transformation in gel-derived nanocrystalline titania powders , 1996 .

[103]  G. Busca,et al.  FT Raman and FTIR studies of titanias and metatitanate powders , 1994 .

[104]  D. Fray,et al.  Enhanced anatase-to-rutile phase transformation without exaggerated particle growth in nanostructured titania-tin oxide composites , 2007 .

[105]  R. Eppler Effect of Antimony Oxide on the Anatase‐Rutile Transformation in Titanium Dioxide , 1987 .

[106]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[107]  D. G. Syarif,et al.  Preparation of anatase and rutile thin films by controlling oxygen partial pressure , 2002 .

[108]  Jinping Liu,et al.  Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process , 2006 .

[109]  Xing Ding,et al.  Correlation Between Anatase-to-rutile Transformation and Grain Growth in Nanocrystalline Titania Powders , 1998 .

[110]  A. Mills,et al.  Self-cleaning titania films: an overview of direct, lateral and remote photo-oxidation processes , 2005 .

[111]  P. Smirniotis,et al.  Interaction of anatase and rutile TiO2 particles in aqueous photooxidation , 2003 .

[112]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[113]  Tijana Rajh,et al.  Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms. , 2005, The journal of physical chemistry. B.

[114]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[115]  Jae-pyoung Ahn,et al.  Effect of compact structure on phase transformation kinetics from anatase phase to rutile phase and microstructure evolution during sintering of ultrafine titania powder compacts , 1999 .

[116]  Fabiana C. Gennari,et al.  Kinetics of the anatase–rutile transformation in TiO2 in the presence of Fe2O3 , 1998 .

[117]  José M.F. Ferreira,et al.  On the Titania Phase Transition by Zirconia Additive in a Sol-Gel-Derived Powder , 1998 .

[118]  J. Criado,et al.  Mechanism of the inhibiting effect of phosphate on the anatase → rutile transformation induced by thermal and mechanical treatment of TiO2 , 1983 .

[119]  G. Córdoba,et al.  Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process , 2002 .

[120]  Alexander G. Agrios,et al.  Probing reaction mechanisms in mixed phase TiO2 by EPR , 2006 .

[121]  F. Tepehan,et al.  Self Cleaning Photoactive TiO2 Coatings on SLS Glasses by Sol-Gel Dip Coating , 2004 .

[122]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[123]  G. Masing,et al.  The Institute of Metals , 1925, Naturwissenschaften.

[124]  V. Mastelaro,et al.  Inhibition of the Anatase−Rutile Phase Transformation with Addition of CeO2 to CuO−TiO2 System: Raman Spectroscopy, X-ray Diffraction, and Textural Studies , 2002 .

[125]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[126]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[127]  R. W. Matthews Photooxidation of organic impurities in water using thin films of titanium dioxide , 1987 .

[128]  Y. Takahashi,et al.  Dip-coating of TiO2 films using a sol derived from Ti(O-i-Pr)4-diethanolamine-H2O-i-PrOH system , 1988 .

[129]  Brian F. Woodfield,et al.  Evidence of linear lattice expansion and covalency enhancement in rutile TiO2 nanocrystals , 2004 .

[130]  L. Gracia,et al.  Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs. , 2006, The journal of physical chemistry. B.

[131]  T Ihara,et al.  Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping , 2003 .

[132]  Masashi Tanaka,et al.  Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder , 1985 .

[133]  S. A. Borkar,et al.  Temperatures and kinetics of anatase to rutile transformation in doped TiO2 heated in microwave field , 2004 .

[134]  A. Burggraaf,et al.  Stabilization of the porous texture of nanostructured titania by avoiding a phase transformation , 1994 .

[135]  M. Matsumura,et al.  Unique Effects of Iron(III) Ions on Photocatalytic and Photoelectrochemical Properties of Titanium Dioxide , 1997 .

[136]  Bo Sundman,et al.  An assessment of the Fe-O system , 1991 .

[137]  S. Feng,et al.  Sol-Hydrothermal Synthesis and Hydrothermally Structural Evolution of Nanocrystal Titanium Dioxide , 2002 .

[138]  N. Everall,et al.  On-Line Analysis Using Raman Spectroscopy for Process Control during the Manufacture of Titanium Dioxide , 2001 .

[139]  Liping Li,et al.  Grain-growth kinetics of rutile TiO 2 nanocrystals under hydrothermal conditions , 2003 .

[140]  J. Durrant,et al.  Preparation and characterisation of novel thick sol-gel titania film photocatalysts , 2003, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[141]  A. Mills,et al.  Visible Illustration of the Direct, Lateral and Remote Photocatalytic Destruction of Soot by Titania , 2004 .

[142]  Jackie Y. Ying,et al.  Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts , 1998 .

[143]  Kimberly A. Gray,et al.  Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR , 2003 .

[144]  T. Yamaki,et al.  Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films , 2002 .

[145]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[146]  Ying Yang,et al.  Effect of doping mode on the photocatalytic activities of Mo/TiO2 , 2004 .

[147]  Liyi Shi,et al.  Morphology and crystal structure of A1-doped TiO2 nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride , 2006 .

[148]  B. Kear,et al.  Synthesis of oxide nanoparticles in low pressure flames , 1999 .

[149]  A. Matthews The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions , 1976 .

[150]  D. K. Kim,et al.  Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4 , 1997 .

[151]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[152]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[153]  K. Warrier,et al.  Anatase to rutile transformation in sol-gel titania by modification of precursor , 1998 .

[154]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[155]  J. Banfield,et al.  Formation of rutile nuclei at anatase (112) twin interfaces and the phase transformation mechanism in nanocrystalline titania , 1999 .

[156]  M. Morris,et al.  The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2 , 2006 .

[157]  Y. Shapira,et al.  Surface photovoltage spectroscopy study of reduced and oxidized nanocrystalline TiO2 films , 2003 .

[158]  I. Willner,et al.  Lanthanide oxide-doped titanium dioxide: Effective photocatalysts for the degradation of organic pollutants , 1999 .

[159]  Lefei Ding,et al.  Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics , 2001 .

[160]  Yaron Paz,et al.  Remote Photocatalytic Activity as Probed by Measuring the Degradation of Self-Assembled Monolayers Anchored near Microdomains of Titanium Dioxide , 2001 .

[161]  Jianzhong Jiang,et al.  High-pressure polymorphs of anatase TiO 2 , 2000 .

[162]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[163]  Harold H. Kung,et al.  Transition Metal Oxides: Surface Chemistry and Catalysis , 1989 .

[164]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .

[165]  C. Rao KINETICS AND THERMODYNAMICS OF THE CRYSTAL STRUCTURE TRANSFORMATION OF SPECTROSCOPICALLY PURE ANATASE TO RUTILE , 1961 .

[166]  C. Rao,et al.  Some observations concerning the effect of impurities on the anatase-rutile transition , 1959 .

[167]  A. K. Vasudevan,et al.  Phase transformation in sol–gel titania containing silica , 1999 .

[168]  J. Banfield,et al.  Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation , 2000 .

[169]  X. Doménech,et al.  Aluminium(III) adsorption: a soft and simple method to prevent TiO2 deactivation during salicylic acid photodegradation. , 2005, Chemical communications.

[170]  A. Sclafani,et al.  Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions , 1996 .

[171]  N. Mott,et al.  Localized States in Disordered Lattices , 1967, May 1.

[172]  H. Bowen,et al.  Processing of anatase prepared from hydrothermally treated alkoxy-derived hydrous titania , 1988 .

[173]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[174]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[175]  Andrew Mills,et al.  Novel TiO2 CVD films for semiconductor photocatalysis , 2002 .

[176]  S. Manorama,et al.  Bandgap studies on anatase titanium dioxide nanoparticles , 2003 .

[177]  A. Barzykin,et al.  Mechanism of Charge Recombination in Dye-Sensitized Nanocrystalline Semiconductors: Random Flight Model , 2002 .

[178]  N. Lewis,et al.  Flux-Matching Conditions at TiO2 Photoelectrodes: Is Interfacial Electron Transfer to O2 Rate-Limiting in the TiO2-Catalyzed Photochemical Degradation of Organics? , 1994 .

[179]  P. Das,et al.  Anatase–rutile transformation in doped titania under argon and hydrogen atmospheres , 2007 .

[180]  K. Kumar Growth of rutile crystallites during the initial stage of anatase-to-rutile transformation in pure titania and in titania-alumina nanocomposites , 1995 .

[181]  M. Gopal,et al.  Room temperature synthesis of crystalline metal oxides , 1997 .

[182]  R. Janes,et al.  Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing , 2004 .

[183]  H. Kisch,et al.  VISIBLE LIGHT PHOTOCATALYSIS BY A TITANIA TRANSITION METAL COMPLEX , 2004 .

[184]  Liling Hu,et al.  Effects of solvent on properties of sol—gel-derived TiO2 coating films , 1992 .

[185]  Y. Iida,et al.  Grain Growth and Phase Transformation of Titanium Oxide During Calcination , 1961 .

[186]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[187]  P. A. Cox Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties , 1992 .

[188]  G. Kreisel,et al.  Preparation and characterisation of titanium dioxide films for catalytic applications generated by anodic spark deposition , 2004 .

[189]  S. Pratsinis,et al.  Dopants for synthesis of stable bimodally porous titania , 2001 .