Minimizing the discrete logarithmic energy on the sphere: The role of random polynomials
暂无分享,去创建一个
[1] L. L. Whyte. Unique Arrangements of Points on a Sphere , 1952 .
[2] S. Smale,et al. Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .
[3] S. Smale,et al. Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .
[4] E. Saff,et al. Minimal Discrete Energy on the Sphere , 1994 .
[5] Yanmu Zhou. Arrangements of Points on the Sphere , 1995 .
[6] E. Saff,et al. Asymptotics for minimal discrete energy on the sphere , 1995 .
[7] S. Smale. Mathematical problems for the next century , 1998 .
[8] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[9] Peter D Dragnev,et al. On the Separation of Logarithmic Points on the Sphere , 2002 .
[10] Enrique Bendito Pérez,et al. Computational cost of the Fekete problem , 2007 .
[11] L. M. Pardo,et al. Smale’s 17th problem: Average polynomial time to compute affine and projective solutions , 2008 .
[12] Qi Zhong. ENERGIES OF ZEROS OF RANDOM SECTIONS ON RIEMANN SURFACES , 2008 .
[13] Enrique Bendito,et al. Computational cost of the Fekete problem I: The Forces Method on the 2-sphere , 2009, J. Comput. Phys..
[14] Michael Shub,et al. Complexity of Bezout’s Theorem VI: Geodesics in the Condition (Number) Metric , 2007, Found. Comput. Math..
[15] Carlos Beltrán,et al. Fast Linear Homotopy to Find Approximate Zeros of Polynomial Systems , 2011, Found. Comput. Math..