Efficient RNS Reverse Converters for Moduli Sets with Dynamic Ranges Up to $$(10n+1)$$(10n+1)-bit
暂无分享,去创建一个
Héctor Pettenghi | Roberto de Matos | Rogerio Paludo | Pavel A. Lyakhov | P. Lyakhov | H. Pettenghi | Rogério Paludo | R. Matos
[1] Ricardo Chaves,et al. {2 n +1, s n+k , s n -1}: A New RNS Moduli Set Extension. , 2004 .
[2] Yuke Wang. Residue-to-binary converters based on new Chinese remainder theorems , 2000 .
[3] Akhilesh Tyagi,et al. A Reduced-Area Scheme for Carry-Select Adders , 1993, IEEE Trans. Computers.
[4] Héctor Pettenghi,et al. RNS reverse converters for moduli sets with dynamic ranges of 9n-bit , 2016, 2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS).
[5] Stanislaw J. Piestrak,et al. Design of residue multipliers-accumulators using periodicity , 2008 .
[6] Ricardo Chaves,et al. RNS Reverse Converters for Moduli Sets With Dynamic Ranges up to $(8n+1)$ -bit , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.
[7] Ricardo Chaves,et al. Method for designing two levels RNS reverse converters for large dynamic ranges , 2016, Integr..
[8] Ahmad A. Hiasat,et al. VLSI implementation of new arithmetic residue to binary decoders , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
[9] Richard I. Tanaka,et al. Residue arithmetic and its applications to computer technology , 1967 .
[10] Omid Kavehei,et al. Efficient Reverse Converter Designs for the New 4-Moduli Sets $\{2^{n} -1, 2^{n}, 2^{n} +1, 2^{2n + 1}-1\}$ and $\{2^{n} -1, 2^{n} +1, 2^{2n}, 2^{2n} +1\}$ Based on New CRTs , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.
[11] Alexander Skavantzos,et al. An efficient residue to weighted converter for a new residue number system , 1998, Proceedings of the 8th Great Lakes Symposium on VLSI (Cat. No.98TB100222).
[12] L. Sousa,et al. MRC-Based RNS Reverse Converters for the Four-Moduli Sets $\{2^{n} + 1, 2^{n} - 1, 2^{n}, 2^{2n + 1} - 1\}$ and $ \{2^{n} + 1, 2^{n} - 1, 2^{2n}, 2^{2n + 1} - 1\}$ , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.
[13] Keivan Navi,et al. An improved reverse converter for the moduli set {2n-1, 2n, 2n+1, 2n+1-1} , 2008, IEICE Electron. Express.
[14] Nikolay I. Chervyakov,et al. Efficient implementation of modular multiplication by constants applied to RNS reverse converters , 2017, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).
[15] Chip-Hong Chang,et al. A Residue-to-Binary Converter for a New Five-Moduli Set , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.
[16] Ahmad A. Hiasat,et al. A Reverse Converter and Sign Detectors for an Extended RNS Five-Moduli Set , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.
[17] Giorgos Dimitrakopoulos,et al. High-speed parallel-prefix VLSI Ling adders , 2005, IEEE Transactions on Computers.
[18] P. V. Ananda Mohan,et al. RNS-to-Binary Converters for Two Four-Moduli Sets $\{2^{n}-1,2^{n},2^{n}+1,2^{{n}+1}-1\}$ and $\{2^{n}-1,2^{n},2^{n}+1,2^{{n}+1}+1\}$ , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.
[19] Ricardo Chaves,et al. {2/sup n/ + 1, 2/sup n+k/, 2/sup n/ - 1} : a new RNS moduli set extension , 2004, Euromicro Symposium on Digital System Design, 2004. DSD 2004..
[20] Ricardo Chaves,et al. Method to Design General RNS Reverse Converters for Extended Moduli Sets , 2013, IEEE Transactions on Circuits and Systems II: Express Briefs.
[21] Reto Zimmermann,et al. Efficient VLSI implementation of modulo (2/sup n//spl plusmn/1) addition and multiplication , 1999, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336).