Predicting extinction risk in declining species

What biological attributes predispose species to the risk of extinction? There are many hypotheses but so far there has been no systematic analysis for discriminating between them. Using complete phylogenies of contemporary carnivores and primates, we present, to our knowledge, the first comparative test showing that high trophic level, low population density, slow life history and, in particular, small geographical range size are all significantly and independently associated with a high extinction risk in declining species. These traits together explain nearly 50% of the total between–species variation in extinction risk. Much of the remaining variation can be accounted for by external anthropogenic factors that affect species irrespective of their biology.

[1]  D. Penny The comparative method in evolutionary biology , 1992 .

[2]  J. Ginsberg,et al.  Edge effects and the extinction of populations inside protected areas , 1998, Science.

[3]  J. L. Gittleman,et al.  Nonrandom extinction and the loss of evolutionary history. , 2000, Science.

[4]  Michael M. McKinney,et al.  Present and Future Taxonomic Selectivity in Bird and Mammal Extinctions , 1998 .

[5]  D M Raup,et al.  The role of extinction in evolution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Thomas M. Brooks,et al.  Relative risk of extinction of passerine birds on continents and islands , 1999, Nature.

[7]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  M. Warren,et al.  Flight areas of British butterflies: assessing species status and decline , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  T. Garland,et al.  Procedures for the Analysis of Comparative Data Using Phylogenetically Independent Contrasts , 1992 .

[10]  Susan C. Roberts,et al.  Energetic constraints on the diet of terrestrial carnivores , 1999, Nature.

[11]  M. Pagel A method for the analysis of comparative data , 1992 .

[12]  A. C. Economos Brain-life span conjecture: a reevaluation of the evidence. , 1980, Gerontology.

[13]  M. Mckinney Extinction Vulnerability and Selectivity: Combining Ecological and Paleontological Views , 1997 .

[14]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[15]  G. Cowlishaw Predicting the Pattern of Decline of African Primate Diversity: an Extinction Debt from Historical Deforestation , 1999 .

[16]  John G. Fleagle,et al.  Primate Adaptation and Evolution , 1989 .

[17]  Guy Cowlishaw,et al.  Primate Conservation Biology , 2000 .

[18]  J. Damuth Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy‐use , 1987 .

[19]  W. L. The Balance of Nature , 1870, Nature.

[20]  W. Laurance Ecological Correlates of Extinction Proneness in Australian Tropical Rain Forest Mammals , 1991 .

[21]  M. Soulé,et al.  Mesopredator release and avifaunal extinctions in a fragmented system , 1999, Nature.

[22]  I. Owens,et al.  Variation in extinction risk among birds: chance or evolutionary predisposition? , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  Tinker,et al.  Killer whale predation on sea otters linking oceanic and nearshore ecosystems , 1998, Science.

[24]  William J. Sutherland,et al.  Conservation science and action , 1998 .

[25]  B. Valkenburgh MAJOR PATTERNS IN THE HISTORY OF CARNIVOROUS MAMMALS , 1999 .

[26]  L. Ruggiero,et al.  Resilience and conservation of large carnivores in the Rocky Mountains , 1996 .

[27]  B. Wilcox 1988 IUCN red list of threatened animals , 1988 .

[28]  L. Milne,et al.  The Balance of Nature , 1953, Oryx.

[29]  N. D. Pidgen,et al.  The Comparative Method , 1987 .

[30]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[31]  T. Caro,et al.  Behavioral ecology and conservation biology , 1998 .

[32]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[33]  Grenfell,et al.  Inverse density dependence and the Allee effect. , 1999, Trends in ecology & evolution.

[34]  N. Rowe The Pictorial Guide to the Living Primates , 1996 .

[35]  K. Gaston,et al.  Birds, body size and the threat of extinction , 1995 .

[36]  Banco Mundial,et al.  World Resources 1996-97 , 1996 .

[37]  Mark V. Lomolino,et al.  Dynamic biogeography and conservation of endangered species , 2000, Nature.

[38]  A. Ives,et al.  Reptile Extinctions on Land‐Bridge Islands: Life‐History Attributes and Vulnerability to Extinction , 1999, The American Naturalist.

[39]  Brian Groombridge,et al.  1996 IUCN Red List of Threatened Animals , 1996 .