Latent Trait Models with Indicators of Mixed Measurement Level

In this chapter we deal with the formulation and estimation of simul­ taneous equation models in metric latent endogenous variables that are connected to observed variables of any measurement level. The literature on this topic has focused on simultaneous equation models with metric (cf. J6reskog & S6rbom, 1984) and ordinal indicators (Muth€n, 1984). The use of ordinal indicators is based on an normal theory threshold concept implying an ordinal probit model. Concepts based on normal distribution theory are given up when qualitative variables are used as indicators for a latent metric variable (cf. the multinomial logit latent trait model of Bock, 1972). The proposed model structure consists of the following parts: First, causal relations in metric latent variables are modeled as an ordinary simultaneous equation system including dependence on exo­ genous variables. Second, each observed variable is connected to a possibly vector-valued underlying variable-from now on denoted as the latent indicator-via threshold or random utility maximization sub­ models. Third, in the single indicator case the latent indicator is equal to an endogenous variable in the structural equation system. This may happen only if the latent indicator is not vector valued. Hence,

[1]  Forrest D. Nelson,et al.  On a General Computer Algorithm for the Analysis of Models with Limited Dependent Variables , 1974 .

[2]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[3]  Takeshi Amemiya,et al.  The Estimation of a Simultaneous-Equation Tobit Model , 1979 .

[4]  B. Muthén Contributions to factor analysis of dichotomous variables , 1978 .

[5]  G. Maddala Limited-dependent and qualitative variables in econometrics: Introduction , 1983 .

[6]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[7]  Ulrich Küsters,et al.  Hierarchische Mittelwert- und Kovarianzstrukturmodelle mit nichtmetrischen endogenen Variablen , 1987 .

[8]  Hedley Rees,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1985 .

[9]  David J. Bartholomew The foundations of factor analysis , 1984 .

[10]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[11]  F. Drasgow,et al.  The polyserial correlation coefficient , 1982 .

[12]  B. Muthén A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators , 1984 .

[13]  T. Rothenberg Identification in Parametric Models , 1971 .

[14]  Bengt Muthén,et al.  Simultaneous factor analysis of dichotomous variables in several groups , 1981 .

[15]  D. Rubin,et al.  Estimation and Hypothesis Testing in Finite Mixture Models , 1985 .

[16]  Daniel McFadden,et al.  Modelling the Choice of Residential Location , 1977 .

[17]  D. Bartholomew Posterior analysis of the factor model , 1981 .

[18]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[19]  Lung-fei Lee,et al.  Recursive Models with Qualitative Endogenous Variables , 1976 .

[20]  R. D. Bock,et al.  Multivariate Statistical Methods in Behavioral Research , 1978 .

[21]  T. Amemiya On a two-step estimation of a multivariate logit model , 1978 .

[22]  Carlos F. Daganzo,et al.  Multinomial Probit: The Theory and its Application to Demand Forecasting. , 1980 .

[23]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[24]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[25]  R. McDonald,et al.  A note on local identifiability and degrees of freedom in the asymptotic likelihood ratio test , 1977 .

[26]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[27]  D. McFadden Econometric Models of Probabilistic Choice , 1981 .

[28]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[29]  P. Zarembka Frontiers in econometrics , 1973 .

[30]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[31]  J. Anderson,et al.  Regression, Discrimination and Measurement Models for Ordered Categorical Variables , 1981 .

[32]  R. McKelvey,et al.  A statistical model for the analysis of ordinal level dependent variables , 1975 .

[33]  Erling B. Andersen,et al.  Estimating latent correlations between repeated testings , 1985 .

[34]  Anders Christoffersson,et al.  Factor analysis of dichotomized variables , 1975 .

[35]  Charles F. Manski,et al.  Alternative Estimators and Sample Designs for Discrete Choice Analysis , 1981 .

[36]  Takeshi Amemiya,et al.  The Estimation of a Simultaneous Equation Generalized Probit Model , 1978 .

[37]  A. Stroud,et al.  Gaussian quadrature formulas , 1966 .

[38]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[39]  Wagner A. Kamakura,et al.  Book Review: Structural Analysis of Discrete Data with Econometric Applications , 1982 .

[40]  T. Amemiya Tobit models: A survey , 1984 .