Universal Donsker Classes and Metric Entropy
暂无分享,去创建一个
[1] H. Chernoff,et al. The Use of Maximum Likelihood Estimates in {\chi^2} Tests for Goodness of Fit , 1954 .
[2] G. S. Watson,et al. On Chi‐Square Goodness‐Of‐Fit Tests for Continuous Distributions , 1958 .
[3] J. Schwartz,et al. Linear Operators. Part I: General Theory. , 1960 .
[4] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[5] R. Dudley. The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .
[6] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[7] Richard M. Dudley,et al. Sample Functions of the Gaussian Process , 1973 .
[8] A. Beck. Probability in Banach Spaces III , 1976 .
[9] R. Dudley. Central Limit Theorems for Empirical Measures , 1978 .
[10] A. Araujo. On the central limit theorem in Banach spaces , 1978 .
[11] D. Pollard. General chi-square goodness-of-fit tests with data-dependent cells , 1979 .
[12] Richard M. Dudley,et al. Some special vapnik-chervonenkis classes , 1981, Discret. Math..
[13] David S. Moore,et al. Chi-square tests for multivariate normality with application to common stock prices , 1981 .
[14] D. Pollard. A central limit theorem for empirical processes , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[15] Bernd Carl. On a characterization of operators from lq into a Banach space of type p with some applications to eigenvalue problems , 1982 .
[16] Avinash C. Singh,et al. AN EXTENSION OF A THEOREM OF H. CHERNOFF AND E. L. LEHMANN , 1983 .
[17] B. Heinkel. Majorizing measures and limit theorems for co-valued random variables , 1983 .
[18] P. Assouad. Densité et dimension , 1983 .
[19] D. Pollard. Convergence of stochastic processes , 1984 .
[20] K. Alexander,et al. Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .
[21] R. Dudley. A course on empirical processes , 1984 .
[22] E. Giné,et al. Some Limit Theorems for Empirical Processes , 1984 .
[23] École d'été de probabilités de Saint-Flour,et al. École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .
[24] D. Pollard. New Ways to Prove Central Limit Theorems , 1985, Econometric Theory.
[25] József Beck,et al. Lower bounds on the approximation of the multivariate empirical process , 1985 .
[26] R. Dudley. An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions , 1985 .
[27] D. Mason,et al. Weighted Empirical and Quantile Processes , 1986 .
[28] M. Talagrand. The Glivenko-Cantelli Problem , 1987 .
[29] K. Alexander,et al. The central limit theorem for weighted empirical processes indexed by sets , 1987 .
[30] K. Alexander,et al. The Central Limit Theorem for Empirical Processes on Vapnik-Cervonenkis Classes , 1987 .