Universal Donsker Classes and Metric Entropy

When \(\mathfrak{F}\) is a universal Donsker class, then for independent, indetically distributed (i.i.d) observation \(\mathbf{X}_1,\ldots,\mathbf{X}_n\) with an unknown law P, for any \(\mathfrak{f}_i\)in \(\mathfrak{F},\) \(i=1,\ldots,m,\quad n^{-1/2}\left\{ \mathfrak{f}_1\left(\mathbf{X}_1\right)+\ldots+\mathfrak{f}_i\left(\mathbf{X}_n\right)\right\}_{1\leq i\leq m}\) is asymptotically normal with mean Vector \(n^{1/2}\left\{\int\mathfrak{f}_i\left(\mathbf{X}_n\right)d\mathbf{P}\left(x\right)\right\}_{1_\leq i\leq m}\) and covariance matrix \(\int\mathfrak{f}_i\mathfrak{f}_j d\mathbf{P}-\int\mathfrak{f}_id\mathbf{P}\int\mathfrak{f}_jd\mathbf{P},\) uniformly for \({\mathfrak{f}_i}\in \mathfrak{F}.\) Then, for certain Statistics formed frome the \(\mathfrak{f}_i\left(\mathbf{X}_k\right),\) even where \(\mathfrak{f}_i\) may be chosen depending on the \(\mathbf{X}_k\) there will be asymptotic distribution as \(n \rightarrow \infty.\) For example, for \(\mathbf{X}^2\) statistics, where \(f_i\) are indicators of disjoint intervals, depending suitably on \(\mathbf{X}_1,\ldots,\mathbf{X}_n\), whose union is the real line, \(\mathbf{X}^2\) quadratic forms have limiting distributions [Roy (1956) and Watson (1958)] which may, however, not be \(\mathbf{X}^2\) distributions and may depend on P [Chernoff and Lehmann (1954)]. Universal Donsker classes of sets are, up to mild measurability conditions, just classes satisfying the Vapnik–Cervonenkis comdinatorial conditions defined later in this section Donsker the Vapnik-Cervonenkis combinatorial conditions defined later in this section [Durst and Dudley (1981) and Dudley (1984) Chapter 11]. The use of such classes allows a variety of extensions of the Roy–Watson results to general (multidimensional) sample spaces [Pollard (1979) and Moore and Subblebine (1981)]. Vapnik and Cervonenkis (1974) indicated application of their families of sets to classification (pattern recognition) problems. More recently, the classes have been applied to tree-structured classifiacation [Breiman, Friedman, Olshen and Stone (1984), Chapter 12].

[1]  H. Chernoff,et al.  The Use of Maximum Likelihood Estimates in {\chi^2} Tests for Goodness of Fit , 1954 .

[2]  G. S. Watson,et al.  On Chi‐Square Goodness‐Of‐Fit Tests for Continuous Distributions , 1958 .

[3]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[4]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[5]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[6]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[7]  Richard M. Dudley,et al.  Sample Functions of the Gaussian Process , 1973 .

[8]  A. Beck Probability in Banach Spaces III , 1976 .

[9]  R. Dudley Central Limit Theorems for Empirical Measures , 1978 .

[10]  A. Araujo On the central limit theorem in Banach spaces , 1978 .

[11]  D. Pollard General chi-square goodness-of-fit tests with data-dependent cells , 1979 .

[12]  Richard M. Dudley,et al.  Some special vapnik-chervonenkis classes , 1981, Discret. Math..

[13]  David S. Moore,et al.  Chi-square tests for multivariate normality with application to common stock prices , 1981 .

[14]  D. Pollard A central limit theorem for empirical processes , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[15]  Bernd Carl On a characterization of operators from lq into a Banach space of type p with some applications to eigenvalue problems , 1982 .

[16]  Avinash C. Singh,et al.  AN EXTENSION OF A THEOREM OF H. CHERNOFF AND E. L. LEHMANN , 1983 .

[17]  B. Heinkel Majorizing measures and limit theorems for co-valued random variables , 1983 .

[18]  P. Assouad Densité et dimension , 1983 .

[19]  D. Pollard Convergence of stochastic processes , 1984 .

[20]  K. Alexander,et al.  Probability Inequalities for Empirical Processes and a Law of the Iterated Logarithm , 1984 .

[21]  R. Dudley A course on empirical processes , 1984 .

[22]  E. Giné,et al.  Some Limit Theorems for Empirical Processes , 1984 .

[23]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[24]  D. Pollard New Ways to Prove Central Limit Theorems , 1985, Econometric Theory.

[25]  József Beck,et al.  Lower bounds on the approximation of the multivariate empirical process , 1985 .

[26]  R. Dudley An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions , 1985 .

[27]  D. Mason,et al.  Weighted Empirical and Quantile Processes , 1986 .

[28]  M. Talagrand The Glivenko-Cantelli Problem , 1987 .

[29]  K. Alexander,et al.  The central limit theorem for weighted empirical processes indexed by sets , 1987 .

[30]  K. Alexander,et al.  The Central Limit Theorem for Empirical Processes on Vapnik-Cervonenkis Classes , 1987 .