The seasonal pattern of morphological leaf characteristics, leaf nutrient and carbohydrate contents in two energy forest stands growing on fertile clay soil and consisting of Salix viminalis (L.) was investigated. One of the stands was irrigated and liquid fertilized (IL) daily from May to August while the other stand was untreated (C). The study was carried out on shoots growing for their second year on five-year-old roots.
A pronounced seasonal variation in length, weight, and area of leaves of the same developmental stage was observed, while differences between the stands were small. The leaf content of carbohydrates and starch was low. Nitrogen was the only nutrient that was significantly higher in the IL stand compared with the C stand throughout the growing season. The small differences between stands were most probably an effect of the initially high soil fertility. Different bases for expressing plant nutrient status during the growing season, i.e. nutrient amount per leaf dry weight with and without carbohydrates, nutrient amounts per leaf or leaf area, nutrient proportions in leaves, and nutrient amounts in the total canopy, were compared and discussed. It was concluded that the common expression, nutrient weight per dry weight of leaves, without correction for non-structural carbohydrates, was adequate to describe the nutrient situation in well-growing basket willow plantations. The most appropriate time for leaf sampling was proposed to be the phase of most intensive growth.
Blattanalysen von Salix viminalis (L.) Energiewaldbestanden auf ehemals landwirtschaftlich genutztem Boden
In zwei Salix viminalis (L.) Energiewaldbestanden auf fruchtbarem Tonboden wurden die jahreszeitabhangigen morphologischen Merkmale der Blatter sowie deren Veranderungen im Nahrstoff- und Kohlenhydratgehalt studiert. Eine der beiden Parzellen wurde von Mai bis August zusatzlich bewassert und mineralisch gedungt (= IL-Bestand). Die andere Parzelle erhielt weder Bewasserung noch Dungung (= C-Bestand).
Die Jahreszeiten beeinflusten nicht nur die Lange, sondern auch das Gewicht und die Flache der Blatter. Die Unterschiede zwischen den Bestanden waren jedoch gering. Der Gehalt an nichtstrukturellen Kohlenhydraten und Starke in den Blattern war nur gering (< 150 bzw. < 50 mg g−1 Blatt-TM). Einzig die Stickstoffgehalte lagen wahrend der gesamten Vegetationsperiode im IL-Bestand hoher. Wahrscheinlich sind die geringfugigen Unterschiede in Blattmorphe und Nahrstoffgehalten auf die ursprunglich hohe Fruchtbarkeit des ehemals landwirtschaftlich genutzten Bodens zuruckzufuhren. Die Anwendung verschiedener Bezugsgrosen, z. B. der Nahrstoffmenge pro Trockengewicht (inklusive oder exklusive nichtstruktureller Kohlenhydrate), der Nahrstoffmenge pro Gesamtblatt oder pro Einheit Blattflache oder pro Gesamtlaub, sowie der auf N bezogenen Nahrstoffverhaltnisse wird diskutiert. Die Auswertungen bestatigen, das die Gehalte der einzelnen Nahrstoffe in der Blatt-Trockensubstanz (ohne Korrektur fur die Kohlenhydrate) eine gute Beschreibung des Ernahrungszustandes schnellwachsender Salix-Plantagen ergibt. Der beste Zeitpunkt fur die Entnahme der Blattproben war zur Zeit der hochsten Zuwachsrate der Bestande.
[1]
D. McLennan.
Spatial variation in black cottonwood (Populustrichocarpa) foliar nutrient concentrations at seven alluvial sites in coastal British Columbia
,
1990
.
[2]
A. James,et al.
Nitrate availability and shoot area development in small willow (Salix viminalis)
,
1989
.
[3]
T. Ingestad,et al.
Nutrition and growth of birch seedlings at varied relative phosphorus addition rates
,
1988
.
[4]
Kjell Larsson,et al.
CARBOHYDRATES IN ROOTS AND RHIZOMES OF PERENNIAL GRASSES
,
1986
.
[5]
Göran I. Ågren,et al.
Theory for growth of plants derived from the nitrogen productivity concept
,
1985
.
[6]
I. Morrison.
Effect of crown position on foliar concentrations of 11 elements in Acersaccharum and Betulaalleghaniensis trees on a till soil
,
1985
.
[7]
Göran I. Ågren,et al.
Nitrogen productivity of some conifers
,
1983
.
[8]
T. Ericsson.
Growth and nutrition of three Salix clones in low conductivity solutions
,
1981
.
[9]
D. F. Grigal,et al.
Seasonal Dynamics of Tall Shrubs in Northeastern Minnesota: Biomass and Nutrient Element Changes
,
1976
.
[10]
M. C. Hoyle.
Variation in Foliage Composition and Diameter Growth of Yellow Birch with Season, Soil, and Tree Size 1
,
1965
.
[11]
J. Mchargue,et al.
Mineral and Nitrogen Content of the Leaves of Some Forest Trees at Different Times in the Growing Season
,
1932,
Botanical Gazette.
[12]
Theo Verwust.
Logarithmic transformations in biomass estimation procedures: violation of the linearity assumption in regression analysis
,
1991
.
[13]
S. Linder,et al.
Optimization of Biomass Production in Eucalyptus Globulus Plantations. — A Case Study
,
1989
.
[14]
T. Ingestad.
A fertilization model based on the concepts of nutrient flux density and nutrient productivity
,
1988
.
[15]
T. Crow,et al.
Foliar nutrient variation and sampling intensity for Acer rubrum trees
,
1988
.
[16]
T. Ingestad,et al.
Theory and techniques for steady state mineral nutrition and growth of plants
,
1986
.
[17]
T. Ingestad,et al.
Nitrogen stress in birch seedlings. II. N, K, P, Ca, and Mg nutrition
,
1979
.