Computing a lower approximation of the compulsory part of a task with varying duration and varying resource consumption

This paper considers a generalisation of the classical RCPSP problem: the resource consumption of each task is continuously varying over time and the duration and the start of each task may vary within real intervals. A first contribution is a general model for describing the resource consumption of a task over time. This model is justified when considering continuously divisible resources. The second contribution is the computation of the compulsory part or core time of such a task. The compulsory part gives the task's resource consumption common to all feasible schedules. Hence, it can be used in a global resolution process such as constraint programming or branch and bound approaches. The presented polynomial algorithms use only two particular schedules of that task.

[1]  Rolf H. Möhring,et al.  Resource-constrained project scheduling: Notation, classification, models, and methods , 1999, Eur. J. Oper. Res..

[2]  Helmut Simonis,et al.  Modelling Producer/Consumer Constraints , 1995, CP.

[3]  Jean-Louis Laurière,et al.  A Language and a Program for Stating and Solving Combinatorial Problems , 1978, Artif. Intell..

[4]  Jan Węglarz,et al.  Project scheduling : recent models, algorithms, and applications , 1999 .

[5]  Abdelkader Lahrichi,et al.  Ordonnancements. La notion de «parties obligatoires» et son application aux problèmes cumulatifs , 1982 .

[6]  AggounAbderrahmane,et al.  Extending chip in order to solve complex scheduling and placement problems , 1993 .

[7]  M. Biroá Object-oriented interaction in resource constrained scheduling , 1990 .

[8]  Cid C. de Souza,et al.  Scheduling under Labour Resource Constraints , 2004, Constraints.

[9]  François Laburthe,et al.  Cumulative Scheduling with Task Intervals , 1996, JICSLP.

[10]  Qi Guo,et al.  Non-overlapping Constraints between Convex Polytopes , 2001, CP.

[11]  Erik Demeulemeester,et al.  A classification scheme for project scheduling problems , 1998 .

[12]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[13]  Erwin Pesch,et al.  A Survey of Interval Capacity Consistency Tests for Time- and Resource-Constrained Scheduling , 1999 .

[14]  Nicolas Beldiceanu,et al.  Extending CHIP in order to solve complex scheduling and placement problems , 1993, JFPL.

[15]  Stein Krogdahl A Dynamic Storage Allocation Problem , 1973, Inf. Process. Lett..

[16]  Xavier Gandibleux Système d'aide à la décision pour la conduite de processus perturbés ; une approche hybride fondée sur l'intelligence artificielle, la programmation linéaire et l'aide multicritère à la décision : application à la mobilisation de réserve tertiaire d'électricité de France , 1995 .

[17]  Armin Scholl,et al.  Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling , 1999, Eur. J. Oper. Res..