Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation.

[1]  C. Lima,et al.  Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. , 2007, Current opinion in structural biology.

[2]  T. Mizushima,et al.  Crystal structure of Ufc1, the Ufm1-conjugating enzyme. , 2007, Biochemical and biophysical research communications.

[3]  P. Brzovic,et al.  E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages , 2007, Nature Structural &Molecular Biology.

[4]  L. Aravind,et al.  Comparative genomics of protists: new insights into the evolution of eukaryotic signal transduction and gene regulation. , 2007, Annual review of microbiology.

[5]  Weidong Hu,et al.  The intrinsic affinity between E2 and the Cys domain of E1 in ubiquitin-like modifications. , 2007, Molecular cell.

[6]  L. Aravind,et al.  Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold , 2007, Biology Direct.

[7]  B. Dye,et al.  Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. , 2007, Annual review of biophysics and biomolecular structure.

[8]  F. Inagaki,et al.  The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation* , 2007, Journal of Biological Chemistry.

[9]  Cynthia Wolberger,et al.  Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation , 2006, Nature Structural &Molecular Biology.

[10]  W. Xiao,et al.  Solution Structure of the Human Ubiquitin-conjugating Enzyme Variant Uev1a , 2006 .

[11]  A. Haas,et al.  Demonstration of Ubiquitin Thiolester Formation of UBE2Q2 (UBCi), a Novel Ubiquitin-Conjugating Enzyme with Implantation Site-Specific Expression1 , 2006, Biology of reproduction.

[12]  W. Xiao,et al.  Structure and interactions of the ubiquitin-conjugating enzyme variant human Uev1a: implications for enzymatic synthesis of polyubiquitin chains. , 2006, Biochemistry.

[13]  A. Konagurthu,et al.  MUSTANG: A multiple structural alignment algorithm , 2006, Proteins.

[14]  L. Aravind,et al.  The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains , 2006, Genome Biology.

[15]  Eugene V Koonin,et al.  Comparative genomics and structural biology of the molecular innovations of eukaryotes. , 2006, Current opinion in structural biology.

[16]  T. Sixma,et al.  Divide and conquer: the E2 active site , 2006, Nature Structural &Molecular Biology.

[17]  Ryoichi Arai,et al.  Structure of human ubiquitin-conjugating enzyme E2 G2 (UBE2G2/UBC7). , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[18]  C. Lima,et al.  Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway , 2006, Nature Structural &Molecular Biology.

[19]  Erik L. L. Sonnhammer,et al.  Kalign – an accurate and fast multiple sequence alignment algorithm , 2005, BMC Bioinformatics.

[20]  P. Robinson,et al.  E3 ubiquitin ligases. , 2005, Essays in biochemistry.

[21]  David Reverter,et al.  Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex , 2005, Nature.

[22]  E. Koonin,et al.  Novel Predicted Peptidases with a Potential Role in the Ubiquitin Signaling Pathway , 2004, Cell cycle.

[23]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[24]  Somasekar Seshagiri,et al.  De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling , 2004, Nature.

[25]  K. Kinoshita,et al.  Solution structure of the RWD domain of the mouse GCN2 protein , 2004, Protein science : a publication of the Protein Society.

[26]  S. Jentsch,et al.  Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. , 2004, Molecular cell.

[27]  Erica S. Johnson,et al.  Protein modification by SUMO. , 2004, Annual review of biochemistry.

[28]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[29]  Keiji Tanaka,et al.  A novel protein‐conjugating system for Ufm1, a ubiquitin‐fold modifier , 2004, The EMBO journal.

[30]  F. Melchior,et al.  SUMO: ligases, isopeptidases and nuclear pores. , 2003, Trends in biochemical sciences.

[31]  Richard S. Rogers,et al.  A conserved catalytic residue in the ubiquitin‐conjugating enzyme family , 2003, The EMBO journal.

[32]  M. Balakirev,et al.  Otubains: a new family of cysteine proteases in the ubiquitin pathway , 2003, EMBO reports.

[33]  E. Koonin,et al.  Scores of RINGS but No PHDs in Ubiquitin Signaling , 2003, Cell cycle.

[34]  E. Koonin,et al.  The role of lineage-specific gene family expansion in the evolution of eukaryotes. , 2002, Genome research.

[35]  Wesley I. Sundquist,et al.  Tsg101 and the Vacuolar Protein Sorting Pathway Are Essential for HIV-1 Budding , 2001, Cell.

[36]  Thomas L. Madden,et al.  Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. , 2001, Nucleic acids research.

[37]  Michael J. Ellison,et al.  Crystal structure of the human ubiquitin conjugating enzyme complex, hMms2–hUbc13 , 2001, Nature Structural Biology.

[38]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[39]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[40]  Ping Wang,et al.  Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein Ligases , 2000, Cell.

[41]  G J Barton,et al.  Application of multiple sequence alignment profiles to improve protein secondary structure prediction , 2000, Proteins.

[42]  A. Ciechanover,et al.  Ubiquitin‐mediated proteolysis: biological regulation via destruction , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[43]  C. Hill,et al.  Structural basis for the specificity of ubiquitin C‐terminal hydrolases , 1999, The EMBO journal.

[44]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[45]  A Perrakis,et al.  Crystal Structure of Murine/Human Ubc9 Provides Insight into the Variability of the Ubiquitin-conjugating System* , 1997, The Journal of Biological Chemistry.

[46]  Eugene V. Koonin,et al.  SEALS: A System for Easy Analysis of Lots of Sequences , 1997, ISMB.

[47]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[48]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[49]  C. Pickart,et al.  Mechanism of ubiquitin conjugating enzyme E2-230K: catalysis involving a thiol relay? , 1996, Biochemistry.

[50]  J. Felsenstein Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. , 1996, Methods in enzymology.

[51]  C. Sander,et al.  Dali: a network tool for protein structure comparison. , 1995, Trends in biochemical sciences.

[52]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[53]  N. Rawlings,et al.  [32] Families of cysteine peptidases , 1994, Methods in Enzymology.

[54]  S. Jentsch,et al.  Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor , 1993, Cell.

[55]  J. Adachi,et al.  MOLPHY, programs for molecular phylogenetics , 1992 .

[56]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[57]  A. Ciechanover,et al.  Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. , 1983, The Journal of biological chemistry.