Evaluation of Adsorption Characteristics of Radioactive Iodine (I-131) for Various Materials of Granular Activated Carbon (GAC)

Abstract This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of iodine-131 in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as bed volume (BV) 7080, BV 5640, BV 5064 and BV 3192, respectively. The experimental results of adsorption capacity (X/M) for iodine-127 showed that two coal- based GACs were highest (208.6 and 139.1 μg/g), the coconut-based GAC was intermediate (86.5 μg/g) and the wood-based GAC was lowest (54.5 μg/g). The X/M of the coal-based GACs was 2∼4 times higher than the X/M of the coconut-based and wood-based GACs. Key words : Iodine-131, Radionuclide, Granular activated carbon (GAC), Adsorption. 1. 서 론 1) 수중에 함유되어 있는 방사성 물질은 물을 직접 음용함으로서 인체 내로 유입되거나 또는 수중에 서식하는 생물들의 먹이 사슬을 통한 간접적인 방법으로 인체에 흡수될 수 있다. 요오드(I)는 갑상선 호르몬 성분으로 인간과 동물에 필수적인 원소이며, 자연 상태에서는 I-127과 I-129의 동위원소로 이루어져 환경 중에 흔하게 존재한다. 그러나 I-131은 자연 상태에서는 존재하지 않고, 우라늄의 핵분열 과정에서 발생하며, 핵사고시에 환경 중으로 방출되는 매우 위험한 인공 방사성핵종으로 1986년 4월 23일 체르노빌 원전사고 후 원전 주위에서 갑상선암 발병의 증가가 확인되었다(Goossens 등, 1989). 2011년 3월 일본 대지진으로 도쿄 전력의 후쿠시마 다이치 원전의 폭발로 인해 많은 양의 인공방사성핵종이 환경중으로 방출되었으며(Ikemoto와 Magara, 2011), 환경 중으로 방출된 주요 방사성핵종은 Te-132(반감기, 77 hr), Te-131(반감기, 24.8 min) 그리고 그들의 딸핵인 I-131(반감기, 8.05 day), Cs-134(반감기, 2.06 yr), Cs-137(반감기, 30 yr)이었으며, 원전 폭발 후에 I-131이 일본의 먹는물(수돗물)에서 검출되었다(Ikemoto와

[1]  Kyungwoo Lee,et al.  Study on Removal of Artificial Radionuclide (I-131) in Water , 2014 .

[2]  H. Son,et al.  Characteristics of Adsorption and Biodegradation of Tetracycline Antibiotics by Granular Activated Carbon and Biofiltration Process , 2014 .

[3]  小坂 浩司 Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake , 2013 .

[4]  N. Kishida,et al.  Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake. , 2012, Water research.

[5]  Yasumoto Magara,et al.  Measures against impacts of nuclear disaster on drinking water supply systems in Japan , 2011 .

[6]  S. Uchida,et al.  Can we remove iodine-131 from tap water in Japan by boiling? - Experimental testing in response to the Fukushima Daiichi Nuclear Power Plant accident. , 2011, Chemosphere.

[7]  H. Kasai,et al.  Detection and activity of iodine-131 in brown algae collected in the Japanese coastal areas. , 2010, The Science of the total environment.

[8]  G. Amy,et al.  Bromate ion removal by activated carbon , 1996 .

[9]  W. Masschelein,et al.  Removal of the typical isotopes of the Chernobyl fall-out by conventional water treatment , 1989 .

[10]  R. Summers,et al.  The Fate and Removal of Radioactive Iodine in the Aquatic Environment , 1988 .

[11]  H. Son,et al.  Effects of Activated Carbon Types and Service Life on Adsorption of Tetracycline Antibiotic Compounds in GAC Process , 2008 .

[12]  T. Gäfvert,et al.  Removal of radionuclides at a waterworks. , 2002, Journal of environmental radioactivity.