Ganymede and Callisto - Surface textural dichotomies and photometric analysis

Voyager imaging observations of Ganymede and Callisto have been reduced and combined with ground-based telescopic data to produce complete solar phase curves of the satellites' leading and trailing hemispheres. The curves, along with disk-revolve measurements, were fit to scattering models to derive hemispherical values of the following physical parameters describing the surface: the single scattering albedo, the single particle phase function, the compaction state of the optically active portion of the regolith, and the mean slope angle of macroscopically rough features. We find that the leading side of Callisto is composed of particles that are more strongly backscattering and less highly compacted than the trailing side. For Ganymede,no hemispheric differences were detected in the compaction state, the surface roughness, or the single particle phase function. We attribute the difference in Callisto to enhanced meteoritic erosion on the leading side. No such difference is observed for Ganymede because the effects of magnetospheric interactions, which are enhanced closer to the primary and on the trailing side, counterbalance the effects of meteoritic erosion predominating on the leading side. For Europa, which was previously shown to have a less compacted trailing side, magnetospheric alterations predominate. Laboratory measurements of the phase functions of simple surface analogues for Callisto, and thermal eclipse measurements showing that the thermal inertias of the outer three satellites are similar, suggest that differences in the measured solar phase function are best attributed to intrinsic properties of the particles (such as size and shape) rather than primarily to the compaction state of the surface.

[1]  D. Morrison,et al.  Four-color photometry of the Galilean satellites , 1974 .

[2]  A. McEwen Global color and albedo variations on IO , 1988 .

[3]  S. Squyres,et al.  Color photometry of surface features on Ganymede and Callisto , 1981 .

[4]  B. Buratti Application of a radiative transfer model to bright icy satellites , 1984 .

[5]  J. Veverka,et al.  Phase curves of materials of Io: Interpretation in terms of Hapke's function , 1986 .

[6]  E. Sieveka,et al.  The neutral cloud and heavy ion inner torus at Saturn , 1989 .

[7]  B. Buratti,et al.  Spectrogoniometer for measuring planetary surface materials at small phase angles. , 1988, Applied optics.

[8]  A. Dollfus Optical polarimetry of the Galilean satellites of Jupiter , 1975 .

[9]  J. Bell,et al.  The composition and origin of the Iapetus dark material , 1985 .

[10]  J. Veverka,et al.  Effects of surface roughness on the photometric properties of mars , 1972 .

[11]  Bonnie J. Buratti,et al.  Surficial textures of the Galilean satellites , 1988, Nature.

[12]  Henry C. Dones Dynamical and Photometric Studies of Saturn's Rings. , 1987 .

[13]  E. Shoemaker,et al.  The extraordinary radar echoes from Europa, Ganymede, and Callisto : a geological perspective , 1990 .

[14]  R. Clark,et al.  Modeling the reflectance spectrum of Callisto 0.25 to 4.1 μm , 1991 .

[15]  P. Schenk,et al.  Dark-ray and dark-floor craters on Ganymede, and the provenance of large impactors in the Jovian system , 1987 .

[16]  D. T. Thompson,et al.  Europa's phase curve: Implications for surface structure , 1991 .

[17]  Joseph M. Prospero,et al.  Nitrate, non-sea-salt sulfate, and mineral aerosol over the northwestern Indian Ocean , 1987 .

[18]  J. Veverka,et al.  Photometry of rough planetary surfaces: The role of multiple scattering , 1985 .

[19]  A. Dollfus,et al.  Reflectance polarimetry of Callisto and the evolution of the Galilean satellites , 1980 .

[20]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[21]  J. Veverka,et al.  Backscattering from frost on icy satellites in the outer Solar System , 1990, Nature.

[22]  Joseph Veverka,et al.  Uranus satellites: Hapke parameters from Voyager disk-integrated photometry , 1988 .

[23]  J. Veverka,et al.  Albedo dichotomy of Rhea - Hapke analysis of Voyager photometry , 1989 .

[24]  B. Buratti,et al.  Surface properties and photometry of the Uranian satellites , 1990 .

[25]  D. Morrison,et al.  Thermal properties of the Galilean satellites , 1973 .

[26]  B. Buratti,et al.  Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers - Observations with the International Ultraviolet Explorer , 1987 .

[27]  A. McEwen Exogenic and endogenic albedo and color patterns on Europa , 1986 .

[28]  R. Clark,et al.  Europa: Characterization and interpretation of global spectral surface units , 1986 .

[29]  L. Andersson A PHOTOMETRIC STUDY OF PLUTO AND SATELLITES OF THE OUTER PLANETS , 1974 .

[30]  William M. Irvine,et al.  The shadowing effect in diffuse reflection , 1966 .

[31]  R. H. Brown,et al.  Voyager Disk-Integrated Photometry of Triton , 1990, Science.

[32]  W. R. Thompson,et al.  Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system. , 1987, Journal of geophysical research.

[33]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[34]  T. Johnson Galilean satellites - Narrowband photometry 0.30 to 1.10 microns , 1971 .

[35]  R. Clark,et al.  Spectral properties of ice‐particulate mixtures and implications for remote sensing: 1. Intimate mixtures , 1984 .

[36]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[37]  H. N. Russell On the Albedo of the Planets and Their Satellites , 1916 .

[38]  G. Danielson,et al.  High resolution albedo measurements on Io from Voyager 1 , 1981 .

[39]  Kari Lumme,et al.  Radiative transfer in the surfaces of atmosphereless bodies. I. Theory. , 1981 .

[40]  R. L. Millis,et al.  UBV photometry of the Galilean satellites , 1975 .

[41]  L. Soderblom,et al.  Radiometric performance of the Voyager cameras , 1981 .

[42]  A. McEwen,et al.  The global distribution, abundance, and stability of SO2 on Io , 1988 .

[43]  J. Spencer Icy Galilean satellite reflectance spectra: Less ice on Ganymede and Callisto? , 1987 .

[44]  R. Clark,et al.  The spectral reflectance of water-mineral mixtures at low temperatures. [observed on natural satellites and other solar system objects] , 1981 .

[45]  B. Hapke Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect , 1986 .

[46]  J. Veverka The photometric properties of natural snow and of snow-covered planets , 1973 .

[47]  Bonnie J. Buratti,et al.  Voyager photometry of Europa , 1983 .

[48]  O. Hansen Ten-micron eclipse observations of Io, Europa, and Ganymede , 1973 .

[49]  J. F. Mccarthy,et al.  The 16- to 38-micron spectrum of Callisto , 1980 .

[50]  J. Pollack,et al.  Ice and minerals on Callisto - A reassessment of the reflectance spectra , 1990 .

[51]  Robert M. Nelson,et al.  Evidence for sulphur implantation in Europa's UV absorption band , 1981, Nature.

[52]  L. Soderblom,et al.  Global multispectral mosaics of the icy Galilean satellites , 1983 .

[53]  Donald E. Gault,et al.  Mixing of the lunar regolith , 1974 .

[54]  Joseph Veverka,et al.  Photometric properties of lunar terrains derived from Hapke's equation , 1987 .