Frustrierte Lewis‐Paare: metallfreie Wasserstoffaktivierung und mehr

[1]  M. Leskelä,et al.  A Tetrahydrofuran Ring-Opening Product: trans-Tetrachloro{4-[2-(phenylamino)pyridinio]butoxido-O}(tetrahydrofuran-O)zirconium(IV) , 1997 .

[2]  Michael J. Zaworotko,et al.  Konkurrierende Reaktionswege bei der Reaktion von Bis(pentafluorphenyl)boran mit Bis(η5‐cyclopentadienyl)dimethylzirconium: Methan‐Eliminierung oder Methyl‐Hydrid‐Austausch und ein Beispiel für fünffach koordinierten Kohlenstoff , 1995 .

[3]  M. Rubin,et al.  A direct reduction of aliphatic aldehyde, acyl chloride, ester, and carboxylic functions into a methyl group. , 2001, The Journal of organic chemistry.

[4]  C. Kötting,et al.  Insertion of Difluorovinylidene into Hydrogen and Methane , 1999 .

[5]  K. D. Conroy,et al.  Borinium‐, Borenium‐ und Boroniumionen: Synthese, Reaktivität, Anwendung , 2005 .

[6]  Y. Okamoto,et al.  Synthesis, spectra, and reactions of N-triphenylmethylpyridinium salts. Reactions of triphenylmethyl chloride with pyridine under high pressure , 1970 .

[7]  Gregory C. Welch,et al.  Reactions of phosphines with electron deficient boranes. , 2009, Dalton transactions.

[8]  R. Fröhlich,et al.  Functional-group chemistry of organolithium compounds: photochemical [2+2] cycloaddition of alkenyl-substituted lithium cyclopentadienides. , 2006, Angewandte Chemie.

[9]  H. Nöth,et al.  Beiträge zur Chemie des Bors, XXXIX. Die Aminoborierung von Kohlendioxid und Kohlenstoffdisulfid , 1967 .

[10]  J. Ziller,et al.  Synthesis and Reactivity of Organosamarium Diarylpnictide Complexes: Cleavage Reactions of Group 15 E-E and E-C Bonds by Samarium(II). , 1996, Inorganic chemistry.

[11]  B. Jursic Complete basis set and Gaussian ab initio study of protonated isomers of borohydride anion , 1999 .

[12]  M. Freytag,et al.  Phosphonium Salts of 1,8‐Bis(diphenylphosphino)naphthalene: Molecular Structures and NMR‐spectroscopic Studies , 2001 .

[13]  A. Orpen,et al.  1,8-bis(diphenylphosphino)naphthalene : a rigid chelating, diphosphine analogue of proton sponge , 1993 .

[14]  Pierre Braunstein,et al.  Reactions of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complexes , 1988 .

[15]  R. Köster,et al.  Reduction of Polycyclic Arenes by ‐Boranes, II. Borane Catalyzed Hydrogenation of Naphthalenes to Tetralins , 1989 .

[16]  I. Manners,et al.  Heterogeneous or homogeneous catalysis? Mechanistic studies of the rhodium-catalyzed dehydrocoupling of amine-borane and phosphine-borane adducts. , 2004, Journal of the American Chemical Society.

[17]  C. Tautermann,et al.  On the Surprising Kinetic Stability of Carbonic Acid (H2CO3) , 2000 .

[18]  G. Erker,et al.  Evidence for a Continuous Transition between Thiaphosphetane and Betaine-Type Structures in the Thio-Wittig Reaction , 1998 .

[19]  D. Parks,et al.  SYNTHESIS AND SOLUTION AND SOLID-STATE STRUCTURES OF TRIS(PENTAFLUOROPHENYL)BORANE ADDUCTS OF PHC(O)X (X = H, ME, OET, NPRI2) , 1998 .

[20]  Piers,et al.  Mechanistic studies on selectivity in the B(C6F5)3-catalyzed allylstannation of aldehydes: is hypercoordination at boron responsible? , 2000, Organic letters.

[21]  R. Noyori,et al.  Metal-ligand bifunctional catalysis: a nonclassical mechanism for asymmetric hydrogen transfer between alcohols and carbonyl compounds. , 2001, The Journal of organic chemistry.

[22]  S. Grimme Gibt es spezielle nicht‐kovalente π‐π‐Stapelwechselwirkungen wirklich? , 2008 .

[23]  C. Burns,et al.  Uranium-Mediated Ring Opening of Tetrahydrofuran. Crystal Structure of UI(2)(OCH(2)CH(2)CH(2)CH(2)I)(2)(Ph(3)P=O)(2). , 1996, Inorganic chemistry.

[24]  R. Fröhlich,et al.  Reversible, nicht metallunterstützte Bindung von Kohlendioxid durch frustrierte Lewis‐Paare , 2009 .

[25]  Zhongxin Zhou,et al.  Intramolecular NMe2H Elimination and Fulvene Coupling Leading to Novel Allyl-Bridged Zirconocene and Hafnocene Complexes. , 1999, Angewandte Chemie.

[26]  T. Clark,et al.  Rhodium-catalyzed dehydrocoupling of fluorinated phosphine-borane adducts: synthesis, characterization, and properties of cyclic and polymeric phosphinoboranes with electron-withdrawing substituents at phosphorus. , 2005, Chemistry.

[27]  I. Guzei,et al.  Stereochemistry of imine reduction by a hydroxycyclopentadienyl ruthenium hydride. , 2006, Journal of the American Chemical Society.

[28]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[29]  Warren E. Piers,et al.  Bis(pentafluorphenyl)boran: Synthese, Eigenschaften und Hydroborierungschemie eines sehr elektrophilen Borans , 1995 .

[30]  W. Tochtermann Struktur und Reaktionsweise organischer at‐Komplexe , 1966 .

[31]  Maciej Gutowski,et al.  Thermodynamic properties of molecular borane amines and the [BH4-][NH4+] salt for chemical hydrogen storage systems from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[32]  N. Taylor,et al.  Third‐order Nonlinear Optical Properties of Organoboron Compounds: Molecular Structures and Second Hyperpolarizabilities , 1996 .

[33]  R. Fröhlich,et al.  Functionalized Alkali Metal Cyclopentadienides: Structural and Chemical Features† , 2008 .

[34]  R. Köster,et al.  Partial Hydrogenation: From Anthracene to Coronene , 1990 .

[35]  S. Chandrasekhar,et al.  Reductive etherification of carbonyl compounds with alkyl trimethylsilylethers using polymethylhydrosiloxane (PMHS) and catalytic B(C6F5)3 , 2004 .

[36]  C. Kötting,et al.  Reactions of Difluorovinylidene—A Super‐Electrophilic Carbene , 1999 .

[37]  L. Andrews,et al.  Reactions of Pulsed-Laser Evaporated Boron Atoms with Hydrogen. Infrared Spectra of Boron Hydride Intermediate Species in Solid Argon , 1994 .

[38]  W. Kuchen,et al.  Reactions of coordinated ligands: VIII. Phosphinoformic acids RR′PCOOH (R, R′ = organyl, H), the still unknown P-analogues of carbaminic acids, stabilized as ligands in complexes (CO)5MPRR′COOH (M Cr, W) , 1994 .

[39]  D. Stephan,et al.  Substitution or nucleophilic attack by phosphines on tetrachlorobis(tetrahydrofuran)zirconium , 1992 .

[40]  Frédéric-Georges Fontaine,et al.  Coordination Chemistry of Neutral (Ln)–Z Amphoteric and Ambiphilic Ligands , 2008 .

[41]  K. Yamamura,et al.  Novel metal-free hydrogenation of the carbon-carbon double bond in azulenoid enones by use of cycloheptatriene and protic acid. , 2006, Organic letters.

[42]  A. Arif,et al.  Reversible carboxylation of N-heterocyclic carbenes. , 2004, Chemical communications.

[43]  C. Butts,et al.  Intermolecular chirality transfer from silicon to carbon: interrogation of the two-silicon cycle for Pd-catalyzed hydrosilylation by stereoisotopochemical crossover. , 2007, Journal of the American Chemical Society.

[44]  Jackie Y Ying,et al.  Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. , 2009, Angewandte Chemie.

[45]  W. Drenth,et al.  Basicity of alkynylphosphines , 2010 .

[46]  H. Puschmann,et al.  Ambiphilic diphosphine-borane ligands: metal-->borane interactions within isoelectronic complexes of rhodium, platinum and palladium. , 2008, Chemistry.

[47]  S. Whittenburg,et al.  Van der Waals complexes between Lewis bases and molecular hydrogen in argon matrixes , 1990 .

[48]  W. Tochtermann Structures and Reactions of Organic ate‐Complexes , 1966 .

[49]  Fabio Marchetti,et al.  Converting carbon dioxide into carbamato derivatives. , 2003, Chemical reviews.

[50]  D. Bourissou,et al.  A Zwitterionic Gold(I) Complex from an Ambiphilic Diphosphino−Alane Ligand , 2008 .

[51]  O. A. Erastov,et al.  Synthesis of 3,4,6-borataoxaphosphoniacyclohexenes , 1988 .

[52]  T. Privalov Hydrogenation of imines by phosphonium borate zwitterions: a theoretical study. , 2009, Dalton transactions.

[53]  J. Nelson,et al.  Transition Metal-Catalyzed Formation of Phosphorus−Boron Bonds: A New Route to Phosphinoborane Rings, Chains, and Macromolecules , 2000 .

[54]  B. Gautheron,et al.  Stabilite configurationnelle de carbocations et d'organolithiens. Derives de ferrocenophanes heteropontes , 1977 .

[55]  A. Sironi,et al.  Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: Synthesis, reactivity and metallocene activation , 2006 .

[56]  S. Thangavelu,et al.  Synthetic, spectroscopic and structural studies of two novel phosphanyl(organyl)borane compounds , 2008 .

[57]  Y. Struchkov,et al.  Interaction ofZ-1,2-borylphosphinoalkene with ketenimine , 1996 .

[58]  A. Schmitzer,et al.  Exploitation of perfluorophenyl-phenyl interactions for achieving difficult macrocyclizations by using ring-closing metathesis. , 2006, Angewandte Chemie.

[59]  R. Fröhlich,et al.  Heterolytic Cleavage of Dihydrogen by Frustrated Lewis Pairs Derived from α-(Dimesitylphosphino)ferrocenes and B(C6F5)3† , 2008 .

[60]  H. Schaefer,et al.  The structure and stability of BH5. Does correlation make it a stable molecule? Qualitative changes at high levels of theory , 1994 .

[61]  Charlotte K. Williams,et al.  Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. , 2009, Angewandte Chemie.

[62]  R. Fröhlich,et al.  Metal-free dihydrogen activation chemistry: structural and dynamic features of intramolecular P/B pairs. , 2009, Dalton transactions.

[63]  A. Rufiǹska,et al.  The first liquefaction of high-rank bituminous coals by preceding hydrogenation with homogeneous borane or iodine catalysts. , 2006, Angewandte Chemie.

[64]  M. Oestreich,et al.  "True" chirality transfer from silicon to carbon: asymmetric amplification in a reagent-controlled palladium-catalyzed hydrosilylation. , 2005, Angewandte Chemie.

[65]  W. Piers,et al.  Pentafluorophenylboranes: from obscurity to applications , 1997 .

[66]  D. Stephan,et al.  B-H activation by frustrated Lewis pairs: borenium or boryl phosphonium cation? , 2008, Chemical communications.

[67]  S. Harder,et al.  Early main-group metal catalysts for the hydrogenation of alkenes with H2. , 2008, Angewandte Chemie.

[68]  A. Lough,et al.  Activation of H2 by frustrated Lewis pairs derived from mono- and bis-phosphinoferrocenes and B(C6F5)3. , 2009, Chemical communications.

[69]  Yoshinori Yamamoto,et al.  Lewis acid catalyzed stereoselective hydrosilylation of ketones under the control of σ–π chelation , 2002 .

[70]  J. Pohlmann,et al.  Preparation and Characterization of Group III A Derivatives , 1965 .

[71]  Magnus Rueping,et al.  Geringste Katalysatormengen in der Brønsted‐Säure‐katalysierten Transferhydrierung: enantioselektive Reduktion von Benzoxazinen, Benzthiazinen und Benzoxazinonen , 2006 .

[72]  L. Toupet,et al.  B(C6F5)3-catalyzed formation of B-P bonds by dehydrocoupling of phosphine-boranes. , 2003, Chemical communications.

[73]  S. Grimme Do special noncovalent pi-pi stacking interactions really exist? , 2008, Angewandte Chemie.

[74]  D. Parks,et al.  Hydroboration of vinyl silanes with bis-(pentafluorophenyl)borane: Ground state β-silicon effects , 1998 .

[75]  L. Radom,et al.  Zeolites as Transition-Metal-Free Hydrogenation Catalysts: A Theoretical Mechanistic Study , 2000 .

[76]  H. Brown,et al.  Preparation and Reactions of 2,6-Di-t-butylpyridine and Related Hindered Bases. A Case of Steric Hindrance toward the Proton1,2 , 1966 .

[77]  Masafumi Yamamoto,et al.  N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. , 2009, Angewandte Chemie.

[78]  and Ryoji Noyori,et al.  Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes , 1997 .

[79]  E. Vedejs,et al.  Stereogenic P-Trisubstituted Phosphorus by Crystallization-Induced Asymmetric Transformation: A Practical Synthesis of Phenyl(o-anisyl)methylphosphine Borane , 1997 .

[80]  T. B. Marder,et al.  Applications of Three-Coordinate Organoboron Compounds and Polymers in Optoelectronics , 2004 .

[81]  G. Erker,et al.  Lewis Acid Properties of Tris(pentafluorophenyl)borane. Structure and Bonding in L−B(C6F5)3 Complexes⊥ , 1999 .

[82]  Douglas W. Stephan,et al.  Lutidine/B(C6F5)3: at the boundary of classical and frustrated Lewis pair reactivity. , 2009, Journal of the American Chemical Society.

[83]  Yanfeng Jiang,et al.  Dehydrocoupling of dimethylamine-borane catalysed by rhenium complexes and its application in olefin transfer-hydrogenations. , 2007, Chemical communications.

[84]  R. L. Wells,et al.  Preparation and Characterization of Halogen-Boron-Phosphorus Compounds. X-ray Crystal Structures of X(3)B.P(SiMe(3))(3) and [X(2)BP(SiMe(3))(2)](2) (X = Cl, Br). , 1996, Inorganic chemistry.

[85]  W. Piers,et al.  Synthesis and Characterization of (Perfluoroaryl)borane-Functionalized Carbosilane Dendrimers and Their Use as Lewis Acid Catalysts for the Hydrosilation of Acetophenone , 2002 .

[86]  Jeffrey H. Williams,et al.  The molecular electric quadrupole moment and solid-state architecture , 1993 .

[87]  J. E. Jackson,et al.  Dihydrogen bonding: structures, energetics, and dynamics. , 2001, Chemical reviews.

[88]  I. Pápai,et al.  Concerted attack of frustrated Lewis acid-base pairs on olefinic double bonds: a theoretical study. , 2008, Chemical communications.

[89]  A. S. Balueva,et al.  Synthesis and properties of 1-diphenylboryl-2-diphenylphosphino1,2-diphenylethene , 1993 .

[90]  Noyori,et al.  Selective hydrogenation of benzophenones to benzhydrols. Asymmetric synthesis of unsymmetrical diarylmethanols , 2000, Organic letters.

[91]  G. Erker,et al.  Structural and Spectroscopic Evidence for the Occurrence of gauche‐Betaine Intermediates in the Thio Wittig Reaction , 1999 .

[92]  Malcolm L. H. Green,et al.  Equilibria in the B(C6F5)3–H2O system: synthesis and crystal structures of H2O·B(C6F5)3 and the anions [HOB(C6F5)3]– and [(F5C6)3B(µ-OH)B(C6F5)3]– , 1998 .

[93]  G. Gokel,et al.  Stereoselective syntheses. VIII. Retentive nucleophilic displacements of .alpha.-substituted alkylferrocenes , 1972 .

[94]  John P. Campbell,et al.  Synthesis and Structure of Alkoxy- and (Aryloxy)alanes. Observation of a Ring-Opening Reaction Involving Tetrahydrofuran , 1997 .

[95]  Preston A. Chase,et al.  Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. , 2008, Chemical communications.

[96]  Lionel Delaude Betaine Adducts of N-Heterocyclic Carbenes : Synthesis, Properties, and Reactivity , 2009 .

[97]  J. N. Brönsted Einige Bemerkungen über den Begriff der Säuren und Basen , 2010 .

[98]  C. Walling,et al.  BASE CATALYZED HOMOGENEOUS HYDROGENATION , 1961 .

[99]  H. Nöth,et al.  Beiträge zur Chemie des Bors, 146. Über die Reaktion von Tetrazadiborinanen mit Heterokumulenen: Pseudodipolare [2 + 3]-Cycloadditionen , 1985 .

[100]  D. Cremer,et al.  4-Oxo-2,3,5,6-tetrafluorocyclohexa-2,5-dienylidene--a highly electrophilic triplet carbene. , 2000, Chemistry.

[101]  B. Krebs,et al.  Alternativ-Liganden, XXXVII. Phosphanliganden mit Bor als Lewis-acidem Zentrum: Synthese und Koordinationseigenschaften / Alternative Ligands, XXXVII. Phosphane Ligands with Boron as Lewis-acidic Centre: Synthesis and Coordinating Properties , 2006 .

[102]  H. Brown,et al.  Studies in Stereochemistry. I. Steric Strains as a Factor in the Relative Stability of Some Coördination Compounds of Boron , 1942 .

[103]  Jason D. Masuda,et al.  Pyridine and phosphine reactions with [CPh3][B(C6F5)4] , 2006 .

[104]  Yoshinori Yamamoto,et al.  Lewis acid-mediated intramolecular addition of silyl enol ethers to internal unactivated alkynes , 2001 .

[105]  M. Rueping,et al.  Remarkably low catalyst loading in Brønsted acid catalyzed transfer hydrogenations: enantioselective reduction of benzoxazines, benzothiazines, and benzoxazinones. , 2006, Angewandte Chemie.

[106]  G. Wittig,et al.  Über Komplexbildung mit Triphenyl-bor (III. Mitt) , 1950 .

[107]  J. A. Marshall,et al.  The BF3 and B(C6F5)3-catalyzed 1,3-isomerization of allylic stannanes , 2001 .

[108]  A. Massey,et al.  Perfluorophenyl derivatives of the elements : I. Tris(pentafluorophenyl)boron , 1964 .

[109]  N. Taylor,et al.  Linear and nonlinear optical properties of three-coordinate organoboron compounds , 2000 .

[110]  D. Parks,et al.  Bis(pentafluorophenyl)borane: Synthesis, Properties, and Hydroboration Chemistry of a Highly Electrophilic Borane Reagent , 1995 .

[111]  J. Meyer,et al.  Multidentate ligand systems featuring dual functionality. , 2008, Dalton transactions.

[112]  Ryoji Noyori,et al.  Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. , 2001, Angewandte Chemie.

[113]  R. Noyori,et al.  Toward efficient asymmetric hydrogenation: architectural and functional engineering of chiral molecular catalysts. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[114]  G. Gokel,et al.  Stereoselective syntheses. VI. Correlation of central and planar chirality in ferrocene derivatives , 1970 .

[115]  Tibor András Rokob,et al.  Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H(2) activation and the role of acid-base properties. , 2009, Journal of the American Chemical Society.

[116]  D. Stephan,et al.  Terminal alkyne activation by frustrated and classical Lewis acid/phosphine pairs. , 2009, Journal of the American Chemical Society.

[117]  R. Köster,et al.  Organo-1,2-Phosphaboretene , 1974 .

[118]  R. Noyori,et al.  Asymmetrische Katalyse mit hinsichtlich Struktur und Funktion gezielt entworfenen Molekülen: die chemo‐ und stereoselektive Hydrierung von Ketonen , 2001 .

[119]  P. Power,et al.  Diarylstannylene activation of hydrogen or ammonia with arene elimination. , 2008, Journal of the American Chemical Society.

[120]  W. Piers,et al.  B(C(6)F(5))(3)-Catalyzed Silation of Alcohols: A Mild, General Method for Synthesis of Silyl Ethers. , 1999, The Journal of organic chemistry.

[121]  R. Geanangel,et al.  11B NMR studies of the thermal decomposition of ammoniaborane in solution , 1988 .

[122]  M. Murakami,et al.  Synthesis of crowded triarylphosphines carrying functional sites , 2005 .

[123]  Jason D. Masuda,et al.  Phosphonium-borate zwitterions, anionic phosphines, and dianionic phosphonium-dialkoxides via tetrahydrofuran ring-opening reactions. , 2006, Inorganic chemistry.

[124]  G. Erker,et al.  Group 4 bent metallocenes and functional groups—Finding convenient pathways in a difficult terrain , 2006 .

[125]  C. Urch,et al.  Electrostatic control of aromatic stacking interactions. , 2005, Journal of the American Chemical Society.

[126]  W. Piers The Chemistry of Perfluoroaryl Boranes , 2005 .

[127]  D. Mullica,et al.  Reaction of nido-7,8-C2B9H13 with pentacarbonyl(methyl)manganese: Crystal structure of the charge-compensated complex [Mn(CO)3{η5-7,8-C2B9H10-10-O(CH2)4}] , 1996 .

[128]  W. Piers,et al.  Synthesis, structural characterization and reactivity of the amino borane 1-(NPh2)-2-[B(C6F5)2]C6H4 , 2003 .

[129]  T. Privalov On the possibility of conversion of alcohols to ketones and aldehydes by phosphinoboranes R2PBR'R'': a computational study. , 2009, Chemistry.

[130]  R. Fröhlich,et al.  Reaction of the Lewis Acid Tris(pentafluorophenyl)borane with a Phosphorus Ylide: Competition between Adduct Formation and Electrophilic and Nucleophilic Aromatic Substitution Pathways , 1998 .

[131]  W. Drenth,et al.  Addition of hydrogen halide to 1-alkynylphosphines: Kinetics and mechanism† , 2010 .

[132]  D. Bourissou,et al.  Tracking reactive intermediates in phosphine-promoted reactions with ambiphilic phosphino-boranes. , 2008, Chemical communications.

[133]  Martin Oestreich,et al.  “Echter” Chiralitätstransfer von Silicium auf Kohlenstoff: asymmetrische Verstärkung in einer reagenskontrollierten palladiumkatalysierten Hydrosilylierung , 2005 .

[134]  Gevorgyan,et al.  A novel B(C(6)F(5))(3)-catalyzed reduction of alcohols and cleavage of aryl and alkyl ethers with hydrosilanes , 2000, The Journal of organic chemistry.

[135]  K. Hafner,et al.  Cyclisch konjugierte 5‐ und 7‐Ringsysteme, II1) 6‐Amino‐ sowie 6‐Hydroxy‐Fulvene und deren Aza‐Analoga , 1964 .

[136]  W. Herrebout,et al.  Van der Waals Complexes between Unsaturated Hydrocarbons and Boron Trifluoride: An Infrared and ab Initio Study of Ethene·BF3 and Propene·BF3 , 1997 .

[137]  G. Erker Syntheses and reactions of fulvene-derived substituted aminoalkyl-Cp and phosphinoalkyl-Cp-Group 4 metal complexes , 2006 .

[138]  Charles A. Eckert,et al.  Green chemistry: Reversible nonpolar-to-polar solvent , 2005, Nature.

[139]  D. Bourissou,et al.  On the versatile and unusual coordination behavior of ambiphilic ligands o-R2P(Ph)BR'2. , 2006, Journal of the American Chemical Society.

[140]  G. Jaouen,et al.  Synthesis and Structure of a Four-Coordinate Aluminum Alkyl Cation/HB(C6F5)3 Salt: Implication in a B(C6F5)3-Catalyzed Hydroalumination Reaction of Benzophenone or Benzaldehyde , 2004 .

[141]  B. Wrackmeyer,et al.  Multinuclear magnetic resonance study of N,N′,N″‐tris(trimethylsilyl)borazine , 1995 .

[142]  Kwang S. Kim,et al.  A Theoretical Investigation of Benzene−AlX3 and Ethene−AlX3 (X = H, F, Cl) Interactions , 1999 .

[143]  K. Laali,et al.  Influence of Lewis Acid and Solvent in the Hydrosilylation of Aldehydes and Ketones with Et3SiH; Tris(pentafluorophenyl)borane B(C6F5)3 versus Metal Triflates [M(OTf)3; M = Sc, Bi, Ga, and Al] – Mechanistic Implications , 2009 .

[144]  R. F. Porter,et al.  Analysis of fine splittings in the fourier transform 1H magnetic resonance spectra of some 15N labeled borazine derivatives , 1974 .

[145]  K. Harms,et al.  Synthese eines Titana-Oxacyclohexanringes durch kontrollierte Ringöffnung von Tetrahydrofuran. Kristallstrukturen von [Ti(CH2)4O{Me2Si(NBut)2}]2, [TiCl{Me2Si(NBut)2}]3(μ3-O)(μ3-Cl) und [Li2(THF)3{Me2Si(NBut)2}] , 1998 .

[146]  R. Laitinen,et al.  An unexpected tetrahydrofuran ring opening: synthesis and structural characterization of Ph3PO(CH2)4TeBr4 , 2001 .

[147]  D. Bourissou,et al.  Photoisomerizable heterodienes derived from a phosphine borane. , 2007, Angewandte Chemie.

[148]  Iris M. Oppel,et al.  Metal-free conversion of methane and cycloalkanes to amines and amides by employing a borylnitrene. , 2008, Angewandte Chemie.

[149]  Jason D. Masuda,et al.  Tuning Lewis acidity using the reactivity of "frustrated Lewis pairs": facile formation of phosphine-boranes and cationic phosphonium-boranes. , 2007, Dalton transactions.

[150]  Douglas W Stephan,et al.  "Frustrated Lewis pairs": a concept for new reactivity and catalysis. , 2008, Organic & biomolecular chemistry.

[151]  D. Parks,et al.  Synthesis, Properties, and Hydroboration Activity of the Highly Electrophilic Borane Bis(pentafluorophenyl)borane, HB(C6F5)21 , 1998 .

[152]  Dianjun Chen,et al.  Metal-free catalytic hydrogenation of imines with tris(perfluorophenyl)borane. , 2008, Chemical communications.

[153]  Gregory C. Welch,et al.  Reactivity of "frustrated Lewis pairs": three-component reactions of phosphines, a borane, and olefins. , 2007, Angewandte Chemie.

[154]  D. Bourissou,et al.  Quasi-thermoneutral P --> B interactions within di- and tri-phosphine boranes. , 2007, Inorganic chemistry.

[155]  Eugeny Y. Kenig,et al.  CO2‐Alkanolamine Reaction Kinetics: A Review of Recent Studies , 2007 .

[156]  J. Goodman,et al.  Theoretical study of the mechanism of hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. , 2008, Journal of the American Chemical Society.

[157]  R. Fröhlich,et al.  Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. , 2008, Angewandte Chemie.

[158]  W. Leitner The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey , 1996 .

[159]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[160]  I. Manners,et al.  B-N compounds for chemical hydrogen storage. , 2009, Chemical Society reviews.

[161]  M. A. Fox,et al.  Phosphine promoted substituent redistribution reactions of B-chlorocatechol borane: molecular structures of ClBcat, BrBcat and L·ClBcat (cat = 1,2-O2C6H4; L = PMe3, PEt3, PBut3, PCy3, NEt3) , 2001 .

[162]  Ian D. Williams,et al.  Three coordinate phosphorus and boron as π-donor and π-acceptor moieties respectively, in conjugated organic molecules for nonlinear optics: crystal and molecular structures of E-Ph–CHCH–B(mes)2, E-4-MeO–C6H4–CHCH-B(mes)2, and E-Ph2P–CHCH–B(mes)2[mes = 2,4,6-Me3C6H2] , 1990 .

[163]  G. Oertel,et al.  Additionsreaktionen an Amide des Siliciums, Phosphors, Arsens und Schwefels , 1964 .

[164]  Fahmi Himo,et al.  Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: a density functional theory study of reaction mechanism and the origins of enantioselectivity. , 2008, Chemistry.

[165]  G. Erker,et al.  Formation of functionalized [3]ferrocenophane derivatives by an enamine condensation reaction , 1999 .

[166]  Walter Leitner,et al.  Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2 , 1995 .

[167]  M. Oestreich,et al.  Conclusive evidence for an S(N)2-Si mechanism in the B(C6F5)3-catalyzed hydrosilylation of carbonyl compounds: implications for the related hydrogenation. , 2008, Angewandte Chemie.

[168]  R. Fröhlich,et al.  Ansa-metallocene polymerization catalysts derived from [2+2]cycloaddition reactions of bis(1-methylethenyl-cyclopentadienyl)zirconium systems , 2006, Proceedings of the National Academy of Sciences.

[169]  S. Saito,et al.  Aqua-aminoorganoboron Catalyst: Engineering Single Water Molecule to Act as an Acid Catalyst in Nitro Aldol Reaction , 2008 .

[170]  S. Connon Asymmetric organocatalytic reductions mediated by dihydropyridines. , 2007, Organic & biomolecular chemistry.

[171]  L. V. Griend,et al.  Neutral six-coordinate carbamate and thiocarbamate complexes of phosphorus formed by "insertion" reactions of the phosphorus-nitrogen bond , 1977 .

[172]  V. Gevorgyan,et al.  B(C6F5)3-catalyzed allylation of secondary benzyl acetates with allylsilanes. , 2001, Organic letters.

[173]  Martin Nieger,et al.  Experimental and theoretical treatment of hydrogen splitting and storage in boron–nitrogen systems , 2009 .

[174]  T. Imamoto,et al.  Reactions of t-Butylphosphine–Borane with Various Electrophiles and Synthesis of Optically Active t-Butylmethylphosphine–Borane , 2002 .

[175]  W. Piers,et al.  B(C6F5)3 catalyzed hydrosilation of enones and silyl enol ethers , 2002 .

[176]  Klaus R. Liedl,et al.  Zur überraschenden kinetischen Stabilität von Kohlensäure (H2CO3) , 2000 .

[177]  B. Arbuzov,et al.  Reaction of 1-boryl-2-phosphinoethenes with carbon disulfide , 1990 .

[178]  W. Leitner Kohlendioxid als Rohstoff am Beispiel der Synthese von Ameisensäure und ihren Derivaten , 1995 .

[179]  O. A. Erastov,et al.  Reaction of acetyl chloride with borylphosphinoethene , 1989 .

[180]  L. Vendier,et al.  Synthesis and Reactivity of Ruthenium Arene Complexes Incorporating Novel Ph2PCH2CH2BR2 Ligands. Easy Access to the Four-Membered Ruthenacycle [(p-cymene)RuCl(κC,P-CH2CH2PPh2)] , 2008 .

[181]  Preston A. Chase,et al.  Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. , 2008, Angewandte Chemie.

[182]  Magnus Rueping,et al.  Organokatalytische enantioselektive Reduktion von Pyridinen , 2007 .

[183]  Martin Nieger,et al.  Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. , 2008, Journal of the American Chemical Society.

[184]  R. Fröhlich,et al.  Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. , 2007, Chemical communications.

[185]  H. Lankamp,et al.  A new interpretation of the monomer-dimer equilibrium of triphenylmethyl- and alkylsubstituted-diphenyl methyl-radicals in solution , 1968 .

[186]  H. Schmidbaur,et al.  Trivinylphosphineborane (CH2CH)3PBH3 and related compounds , 2003 .

[187]  S. Harder,et al.  Bimetallic Calcium and Zinc Complexes with Bridged β-Diketiminate Ligands: Investigations on Epoxide/CO2 Copolymerization , 2008 .

[188]  V. Gevorgyan,et al.  B(C6F5)3-catalyzed allylation of propargyl acetates with allylsilanes. , 2004, Organic letters.

[189]  S. Geier,et al.  Activation of H2 by phosphinoboranes R2PB(C6F5)2. , 2008, Journal of the American Chemical Society.

[190]  S. Grimme,et al.  Responsive Iron Neighboring Group Participation in Amino-Substituent-Stabilized [3]Ferrocenophane α-Carbenium Ions: A Combined Theoretical and Experimental Study , 2004 .

[191]  J. Wristers Strong acid-catalyzed hydrogenation of aromatics , 1975 .

[192]  Ludwig,et al.  In Spite of the Chemist's Belief: Carbonic Acid Is Surprisingly Stable. , 2000, Angewandte Chemie.

[193]  Todd B. Marder,et al.  Die Borchemie leuchtet: optische Eigenschaften von Molekülen und Polymeren C.D.E. dankt EPSRC und Syngenta für Postgraduiertenstipendien und T.B.M. der University of Durham für Unterstützung sowie Prof. Dr. K. Tamao für einen Vorabdruck von Lit. 32. , 2002 .

[194]  Zhong-Yuan Zhou,et al.  Bildung neuartiger allylverbrückter Zirconocen- und Hafnocenkomplexe durch intramolekulare NMe2H-Eliminierung und Fulvenkupplung , 1999 .

[195]  B. Wrackmeyer,et al.  Kernresonanzspektroskopische Untersuchungen an Bor‐Verbindungen, XI. 14‐ und 11B‐Kernresonanzstudien an Borazinen , 1976 .

[196]  G. Parkin,et al.  Aqua, Alcohol, and Acetonitrile Adducts of Tris(perfluorophenyl)borane: Evaluation of Brønsted Acidity and Ligand Lability with Experimental and Computational Methods , 2000 .

[197]  K. Hensen,et al.  Spektroskopische und theoretische Untersuchungen am Borazolmolekül und seinen Bortrihalogenoderivaten , 1967 .

[198]  R. Fröhlich,et al.  Bildung eines neuartigen ansa‐Metallocen‐Gerüsts durch intramolekulare photochemische [2+2]‐Cycloaddition von Bis(2‐alkenylindenyl)zirconium‐Komplexen , 2004 .

[199]  Martin Oestreich,et al.  Schlüssiger Nachweis eines SN2‐Si‐Mechanismus in der B(C6F5)3‐ katalysierten Hydrosilylierung von Carbonylverbindungen: Einsichten in die verwandte Hydrierung , 2008 .

[200]  G. Erker,et al.  Preparation of Enantiomerically Pure [3]Ferrocenophane-Based Chelate Bis-Phosphane Ligands and Their Use in Asymmetric Alternating Carbon Monoxide/Propene Copolymerization , 2005 .

[201]  T. Tilley,et al.  Beta-Phosphinoethylboranes as Ambiphilic Ligands in Nickel-Methyl Complexes , 2008 .

[202]  Anna Rufiǹska,et al.  Verflüssigung von hoch-inkohlten Steinkohlen nach Hydrierung in Gegenwart von Boran- oder Iod-Homogenkatalysatoren , 2006 .

[203]  W. Piers,et al.  Tris(pentafluorophenyl)boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters , 1996 .

[204]  R. Fröhlich,et al.  Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)naphthalene/B(C6F5)3 pair and its application for metal-free catalytic hydrogenation of silyl enol ethers. , 2008, Chemical communications.

[205]  Piers,et al.  B(C(6)F(5))(3)-Catalyzed hydrosilation of imines via silyliminium intermediates , 2000, Organic letters.

[206]  S. Chandrasekhar,et al.  Rapid defunctionalization of carbonyl group to methylene with polymethylhydrosiloxane-B(C(6)F(5))(3). , 2002, The Journal of organic chemistry.

[207]  M. Ullrich,et al.  Reversible, metal-free, heterolytic activation of H2 at room temperature. , 2009, Journal of the American Chemical Society.

[208]  Holger F. Bettinger,et al.  Metallfreie Umwandlung von Methan und Cycloalkanen in Amine oder Amide mithilfe eines Borylnitrens , 2008 .

[209]  T. Baumgartner,et al.  Organophosphorus π-Conjugated Materials , 2006 .

[210]  G. Erker,et al.  Formation of a unique ansa-metallocene framework by intramolecular photochemical [2+2] cycloaddition of bis(2-alkenylindenyl)zirconium complexes. , 2004, Angewandte Chemie.

[211]  Jason D. Masuda,et al.  Reversible, Metal-Free Hydrogen Activation , 2006, Science.

[212]  T. Lowry The uniqueness of hydrogen , 1923 .

[213]  D. Parks,et al.  Competing Pathways in the Reaction of Bis(pentafluorophenyl)borane with Bis(η5‐cyclopentadienyl)dimethylzirconium: Methane Elimination versus Methyl–Hydride Exchange and an Example of Pentacoordinate Carbon , 1995 .

[214]  M. Leskelä,et al.  Facile heterolytic H2 activation by amines and B(C6F5)3. , 2008, Angewandte Chemie.

[215]  M. Rueping,et al.  Organocatalytic enantioselective reduction of pyridines. , 2007, Angewandte Chemie.

[216]  Jingping Qu,et al.  CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides. , 2008, The Journal of organic chemistry.

[217]  B. Rieger,et al.  Einfache heterolytische H2‐Aktivierung mit Aminen und B(C6F5)3 , 2008 .

[218]  I. Santos,et al.  Uranium complexes with hydrotris(pyrazolyl) borate , 1994 .

[219]  Ian D. Williams,et al.  Synthesis and second-order nonlinear optical properties of three coordinate organoboranes with diphenylphosphino and ferrocenyl groups as electron donors: crystal and molecular structures of (E)-DCHCHB(mes)2 and DCCB(mes)2 [D  P(C6H52, (η-C5H5)Fe(η-C5H4); mes = 2,4,6-(CH3)3C6H2] , 1993 .

[220]  Tibor András Rokob,et al.  Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. , 2008, Angewandte Chemie.

[221]  R. F. Jordan,et al.  THF ring-opening and hydrogen/deuterium exchange reactions of (C5H4Me)2Zr(H)(THF)+. Evidence for hydrogenolysis of zirconium-cyclopentadiene bonds , 1992 .

[222]  Gregory C. Welch,et al.  Facile heterolytic cleavage of dihydrogen by phosphines and boranes. , 2007, Journal of the American Chemical Society.

[223]  K. Akagawa,et al.  Asymmetric transfer hydrogenation in aqueous media catalyzed by resin-supported peptide having a polyleucine tether , 2009 .

[224]  G. Frenking,et al.  Nonpolar dihydrogen bonds--on a gliding scale from weak dihydrogen interaction to covalent H-H in symmetric radical cations [HnE-H-H-EHn]+. , 2008, Chemistry.

[225]  G. Erker Tris(pentafluorophenyl)borane: a special boron Lewis acid for special reactions. , 2005, Dalton transactions.

[226]  Ryoji Noyori,et al.  Homogeneous Hydrogenation of Carbon Dioxide , 1995 .

[227]  G. Bertrand,et al.  Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center , 2007, Science.

[228]  R. Fröhlich,et al.  Catalytic hydrogenation of sensitive organometallic compounds by antagonistic N/B Lewis pair catalyst systems. , 2009, Journal of the American Chemical Society.

[229]  G. Wittig,et al.  ber das Verhalten von Dehydrobenzol gegenber nucleophilen und elektrophilen Reagenzien , 1959 .

[230]  M. Aresta,et al.  Isolation and structural determination of two derivatives of the elusive carbamic acid , 2000 .

[231]  Preston A. Chase,et al.  Metal-free catalytic hydrogenation. , 2007, Angewandte Chemie.

[232]  M. Rueping,et al.  A highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. , 2006, Angewandte Chemie.

[233]  I. Pápai,et al.  On the mechanism of B(C6F5)3-catalyzed direct hydrogenation of imines: inherent and thermally induced frustration. , 2009, Journal of the American Chemical Society.

[234]  D. Stephan Frustrated Lewis pairs: a new strategy to small molecule activation and hydrogenation catalysis. , 2009, Dalton transactions.

[235]  M. Siskin,et al.  Strong acid chemistry. I. Reactions of aromatics in the hydrogen fluoride-tantalum pentafluoride (HF-TaF5) acid system , 1974 .

[236]  G. Keglevich,et al.  B(C6F5)3-catalyzed silylation versus reduction of phosphonic and phosphinic esters with hydrosilanes , 2002 .

[237]  Shuhua Li,et al.  A Novel Addition Mechanism for the Reaction of Frustrated Lewis Pairs with Olefins , 2008 .

[238]  M. C. Baird,et al.  Syntheses, characterization, and crystal structures of the tetramethylammonium salts of the novel weakly coordinating anions [MeCO2{B(C6F5)3}] and [MeCO2{B(C6F5)3}2] , 2006 .

[239]  Magnus Rueping,et al.  Eine hoch enantioselektive Brønsted‐Säure‐katalysierte Kaskadenreaktion: organokatalytische Transferhydrierung von Chinolinen und deren Anwendung in der Synthese von Alkaloiden , 2006 .

[240]  Shuhua Li,et al.  Unusual concerted Lewis acid-Lewis base mechanism for hydrogen activation by a phosphine-borane compound. , 2008, Inorganic chemistry.

[241]  D. Dickie,et al.  Insertion of carbon dioxide into main-group complexes: formation of the [N(CO2)3]3- ligand. , 2008, Angewandte Chemie.

[242]  K. Maruoka,et al.  Hypercoordination of Boron and Aluminum: Synthetic Utility as Chelating Lewis Acids , 1998 .

[243]  A. Berkessel,et al.  Hydrogenation without a Metal Catalyst: An ab Initio Study on the Mechanism of the Metal-Free Hydrogenase from Methanobacterium thermoautotrophicum , 1998 .

[244]  J. Benet‐Buchholz,et al.  Donor-acceptor metallocene catalysts for the production of UHMW-PE: pushing the selectivity for chain growth to its limits. , 2006, Angewandte Chemie.

[245]  M. Aresta,et al.  Utilisation of CO2 as a chemical feedstock: opportunities and challenges. , 2007, Dalton transactions.

[246]  Ian Manners,et al.  Transition metal-catalyzed formation of boron-nitrogen bonds: catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. , 2003, Journal of the American Chemical Society.

[247]  R. Fröhlich,et al.  Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates: evidence for a concerted olefin addition reaction. , 2009, Journal of the American Chemical Society.

[248]  J. Fettinger,et al.  Facile activation of dihydrogen by an unsaturated heavier main group compound. , 2005, Journal of the American Chemical Society.

[249]  Cristian G. Hrib,et al.  Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. , 2008, Angewandte Chemie.

[250]  H. Bettinger,et al.  Insertion into dihydrogen employing the nitrogen centre of a borylnitrene. , 2009, Chemical communications.

[251]  T. Schubert,et al.  Hydrogenation without a transition-metal catalyst: on the mechanism of the base-catalyzed hydrogenation of ketones. , 2002, Journal of the American Chemical Society.

[252]  M. J. Bayer,et al.  Synthesis, structures, and donor-acceptor adducts of tris(3,3‐dimethyl‐1‐butynyl)borane , 2002 .

[253]  R. Bartlett,et al.  On the Existence of BH5 , 1995 .

[254]  H. Geise,et al.  Reaction of 1,2-borylphosphinoethene with thiocyanates. Molecular and crystal structure of 2,2,3-tributyl-4,5,5-triphenyl-6-methylthio-1,5,2-azaphosphoniaboratacyclohexa-3,6-diene , 1992 .

[255]  C. Walling,et al.  Homogeneous Hydrogenation in the Absence of Transition-Metal Catalysts , 1964 .

[256]  R. Fröhlich,et al.  Reversible metal-free carbon dioxide binding by frustrated Lewis pairs. , 2009, Angewandte Chemie.

[257]  R. Fröhlich,et al.  Metallfreie katalytische Hydrierung von Enaminen, Iminen und konjugierten Phosphinoalkenylboranen , 2008 .

[258]  Malcolm L. H. Green,et al.  RELATIONSHIP BETWEEN INTRAMOLECULAR CHEMICAL-EXCHANGE AND NMR-OBSERVED RATE CONSTANTS , 1992 .

[259]  T. Ikariya,et al.  Stereoselective formation of α-alkylidene cyclic carbonates via carboxylative cyclization of propargyl alcohols in supercritical carbon dioxide , 2007 .

[260]  M. Zaworotko,et al.  Mechanistic Aspects of the Reactions of Bis(pentafluorophenyl)borane with the Dialkyl Zirconocenes Cp2ZrR2 (R = CH3, CH2SiMe3, and CH2C6H5) , 1998 .

[261]  W. Piers,et al.  Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. , 2005, Angewandte Chemie.

[262]  Christopher D. Entwistle,et al.  Boron chemistry lights the way: optical properties of molecular and polymeric systems. , 2002, Angewandte Chemie.

[263]  S. Grimme,et al.  Structural importance of secondary interactions in molecules: origin of unconventional conformations of phosphine-borane adducts. , 2008, Chemistry.

[264]  Simon Jones,et al.  Asymmetric reduction of ketimines with trichlorosilane employing an imidazole derived organocatalyst. , 2009, Organic & biomolecular chemistry.