Optimized clothes segmentation to boost gender classification in unconstrained scenarios

Several applications require demographic information of ordinary people in unconstrained scenarios. This is not a trivial task due to significant human appearance variations. In this work, we introduce trixels for clustering image regions, enumerating their advantages compared to superpixels. The classical GrabCut algorithm is later modified to segment trixels instead of pixels in an unsupervised context. Combining with face detection lead us to a clothes segmentation approach close to real time. The study uses the challenging Pascal VOC dataset for segmentation evaluation experiments. A final experiment analyzes the fusion of clothes features with state-of-the-art gender classifiers in ClothesDB, revealing a significant performance improvement in gender classification.

[1]  Bok-Min Goi,et al.  Vision-based Human Gender Recognition: A Survey , 2012, ArXiv.

[2]  Oscar Déniz-Suárez,et al.  ENCARA2: Real-time detection of multiple faces at different resolutions in video streams , 2007, J. Vis. Commun. Image Represent..

[3]  Subhransu Maji,et al.  Describing people: A poselet-based approach to attribute classification , 2011, 2011 International Conference on Computer Vision.

[4]  Mario Hernández-Tejera,et al.  Distance maps from unthresholded magnitudes , 2012, Pattern Recognit..

[5]  Stefano Soatto,et al.  Class segmentation and object localization with superpixel neighborhoods , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[6]  Arun Ross,et al.  What Else Does Your Biometric Data Reveal? A Survey on Soft Biometrics , 2016, IEEE Transactions on Information Forensics and Security.

[7]  Yun Fu,et al.  Gender recognition from body , 2008, ACM Multimedia.

[8]  Javier Lorenzo-Navarro,et al.  Improving Gender Classification Accuracy in the Wild , 2013, CIARP.

[9]  Larry S. Davis,et al.  Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Jannik Fritsch,et al.  A multi-modal object attention system for a mobile robot , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[14]  Bing Li,et al.  Gender classification by combining clothing, hair and facial component classifiers , 2012, Neurocomputing.

[15]  Richa Singh,et al.  Harnessing social context for improved face recognition , 2015, 2015 International Conference on Biometrics (ICB).

[16]  Volker Tresp The Bayesian , 2001 .

[17]  Javier Lorenzo-Navarro,et al.  Automatic clothes segmentation for soft biometrics , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[18]  Shuicheng Yan,et al.  Fashion Parsing With Weak Color-Category Labels , 2014, IEEE Transactions on Multimedia.

[19]  Dariu Gavrila,et al.  A Bayesian, Exemplar-Based Approach to Hierarchical Shape Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[21]  Pritee Khanna,et al.  A gender classification system robust to occlusion using Gabor features based (2D)2PCA , 2014, J. Vis. Commun. Image Represent..

[22]  Huizhong Chen,et al.  Describing Clothing by Semantic Attributes , 2012, ECCV.

[23]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[24]  Springer-Verlag London Limited Multi-view gender classification using symmetry of facial images , 2011 .

[25]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  Paul C. Miller,et al.  Full body image feature representations for gender profiling , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[28]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[29]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[30]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[31]  Tal Hassner,et al.  Age and gender classification using convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[32]  Sven J. Dickinson,et al.  Multiscale Symmetric Part Detection and Grouping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[33]  Javier Lorenzo-Navarro,et al.  Descriptors and regions of interest fusion for in- and cross-database gender classification in the wild , 2017, Image Vis. Comput..

[34]  Ebroul Izquierdo,et al.  GrabcutD: improved grabcut using depth information , 2010, SMVC '10.

[35]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[36]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[37]  Caifeng Shan,et al.  Learning local binary patterns for gender classification on real-world face images , 2012, Pattern Recognit. Lett..